1
|
Sinha A, Griffith L, Acharjee A. Systematic Review and Meta-Analysis: Taurine and Its Association With Colorectal Carcinoma. Cancer Med 2024; 13:e70424. [PMID: 39632512 PMCID: PMC11617591 DOI: 10.1002/cam4.70424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers. Various options are available for treatment, but prognosis is still poor in the more advanced stages. Current screening methods are not as accurate for distinguishing between benign and malignant growths, resulting in unnecessary invasive procedures. Recently a focus has been placed on identifying metabolites. Of these, taurine has frequently been detected, and this particular compound has a multifactorial role in human physiology. METHODS We conducted a systematic review of studies up till November 2023. Searches were done in three databases- MEDLINE, CINAHL-Ebsco, and PubMed. Three independent reviewers filter titles, abstracts, and full-texts according to selection criteria. Ten studies (samples = 1714) were identified showing a differential level of taurine in CRC patient samples. Quality assessment accounted for the risk of bias of each study using the 'robvis' tool. Where meaningful comparisons could be made, meta-analyses were carried out using the 'R' program for precalculated effect sizes with 'metagen' in R. The 'meta' package was utilised for creation of forest plots. FINDINGS Taurine was shown to significantly increase odds of CRC. It was also significantly associated with being a discriminator for CRC as a diagnostic metabolite. This was maintained at various stages of CRC. Taurine had increased expression in CRC patients, especially when the matrix utilised was blood. Nevertheless, there was significant heterogeneity for some outcomes. INTERPRETATION In conclusion, these findings highlight the potential of using taurine as well as other bile acid metabolites (lithocholic and ursodeoxycholic acid) to diagnose CRC and illustrate the link with microbiome interactions. Overall increased taurine concentration are associated with significantly increased odds for CRC. There was mostly an increase in relative expression of taurine in CRC samples, excluding results from Wang et al.
Collapse
Affiliation(s)
- Akshat Sinha
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Liam Griffith
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS, Foundation TrustBirminghamUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
2
|
Smyth J, Godet J, Choudhary A, Das A, Gkoutos GV, Acharjee A. Microbiome-Based Colon Cancer Patient Stratification and Survival Analysis. Cancer Med 2024; 13:e70434. [PMID: 39569620 PMCID: PMC11579663 DOI: 10.1002/cam4.70434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is any cancer that starts in the colon or the rectum and presents a significant health concern. It is the third most diagnosed and the second deadliest cancer, with an estimated 153,020 new cases and 52,550 deaths in 2023. The severity of colon cancer may be attributed to its ability to avoid the host immune system and growth suppressors, its asymptomatic nature in the early stages, its association with a continually ageing population and unfavourable diet and obesity. The composition of the gut microbiome plays an important role in the development of CRC and presents as an important target in early detection and in predicting treatment outcomes in CRC. This study aims to identify microbiome-specific derived clusters in CRC patients and conduct subsequent survival analysis using the specific microbiome features within clusters. METHODS Consensus clustering and feature selection, involving a Kruskal-Wallis test, a random forest and least absolute shrinkage and selection operator (LASSO) were applied resulting in the identification of differently expressed microbiomes between clusters. Lastly, survival analysis was performed on the selected features using Kaplan-Meier curves and Cox regression. K-means clustering, as selected using consensus clustering interpretation, presented three distinct clusters with clear differences in alpha and beta diversity and baseline clinical variables. RESULTS A total 1311 of the 1406 microbes were selected using the Kruskal Wallis and passed to the random forest and LASSO, which narrowed the dataset to 140 features. Following the survival analysis, eight microbiome species, namely N4likevirus, Ambidensovirus, Synechococcus, Thermithiobacillus, Hydrocarboniphaga, Rhodovibrio, Gloeobacter and Candidatus Nitrosotenuis, were selected as significant in clustering and survival. CONCLUSION This study reveals the heterogeneity of the CRC microbiome and its effect on disease prognosis and necessitates further exploration of the biological mechanisms of these selected microbiomes as well further investigation of whether the approach depicted here is applicable to other cancer types.
Collapse
Affiliation(s)
- Joshua Smyth
- College of Medical and Health, School of Medical Sciences, Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Julien Godet
- Faculty of PharmacyUniversity of StrasbourgStrasbourgFrance
- ICube UMR 7357CNRS, FMTS, University of StrasbourgIllkirchFrance
- Medical Information DepartmentClinical Research Methods Group, University Hospitals of StrasbourgStrasbourgFrance
| | - Anisa Choudhary
- College of Medical and HealthInstitute of Clinical SciencesBirminghamUK
| | - Anubrata Das
- College of Medical and Health, School of Medical Sciences, Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- College of Medical and Health, School of Medical Sciences, Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR)BirminghamUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
| | - Animesh Acharjee
- College of Medical and Health, School of Medical Sciences, Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR)BirminghamUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Tabrizi E, Pourteymour Fard Tabrizi F, Mahmoud Khaled G, Sestito MP, Jamie S, Boone BA. Unraveling the gut microbiome's contribution to pancreatic ductal adenocarcinoma: mechanistic insights and therapeutic perspectives. Front Immunol 2024; 15:1434771. [PMID: 39044834 PMCID: PMC11263025 DOI: 10.3389/fimmu.2024.1434771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The gut microbiome plays a significant role in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), influencing oncogenesis, immune responses, and treatment outcomes. Studies have identified microbial species like Porphyromonas gingivalis and Fusobacterium nucleatum, that promote PDAC progression through various mechanisms. Additionally, the gut microbiome affects immune cell activation and response to immunotherapy, including immune checkpoint inhibitors and CAR-T therapy. Specific microbes and their metabolites play a significant role in the effectiveness of immune checkpoint inhibitors (ICIs). Alterations in the gut microbiome can either enhance or diminish responses to PD-1/PD-L1 and CTLA-4 blockade therapy. Additionally, bacterial metabolites like trimethylamine N-oxide (TMAO) and lipopolysaccharide (LPS) impact antitumor immunity, offering potential targets to augment immunotherapy responses. Modulating the microbiome through fecal microbiota transplantation, probiotics, prebiotics, dietary changes, and antibiotics shows promise in PDAC treatment, although outcomes are highly variable. Dietary modifications, particularly high-fiber diets and specific fat consumption, influence microbiome composition and impact cancer risk. Combining microbiome-based therapies with existing treatments holds potential for improving PDAC therapy outcomes, but further research is needed to optimize their effectiveness.
Collapse
Affiliation(s)
- Eileen Tabrizi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Fatemeh Pourteymour Fard Tabrizi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran
| | - Gehad Mahmoud Khaled
- Department of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt
| | - Michael P. Sestito
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Saeid Jamie
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
4
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
5
|
Halle-Smith JM, Pearce H, Nicol S, Hall LA, Powell-Brett SF, Beggs AD, Iqbal T, Moss P, Roberts KJ. Involvement of the Gut Microbiome in the Local and Systemic Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:996. [PMID: 38473357 DOI: 10.3390/cancers16050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The systemic and local immunosuppression exhibited by pancreatic ductal adenocarcinoma (PDAC) contributes significantly to its aggressive nature. There is a need for a greater understanding of the mechanisms behind this profound immune evasion, which makes it one of the most challenging malignancies to treat and thus one of the leading causes of cancer death worldwide. The gut microbiome is now thought to be the largest immune organ in the body and has been shown to play an important role in multiple immune-mediated diseases. By summarizing the current literature, this review examines the mechanisms by which the gut microbiome may modulate the immune response to PDAC. Evidence suggests that the gut microbiome can alter immune cell populations both in the peripheral blood and within the tumour itself in PDAC patients. In addition, evidence suggests that the gut microbiome influences the composition of the PDAC tumour microbiome, which exerts a local effect on PDAC tumour immune infiltration. Put together, this promotes the gut microbiome as a promising route for future therapies to improve immune responses in PDAC patients.
Collapse
Affiliation(s)
- James M Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lewis A Hall
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah F Powell-Brett
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tariq Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Microbiome Treatment Centre, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Keith J Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
7
|
Qin YM, Sha J. Progress in understanding of relationship between intestinal microecology and pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:1001-1006. [DOI: 10.11569/wcjd.v31.i24.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
In recent years, the association between the gut microbiota (GM) and pancreatic cancer (PC) has attracted extensive attention. Studies have shown that the oral, intestinal, and pancreatic microbiota of PC patients is different from that of healthy people, showing different characteristics. On this basis, the application of characteristic GM and its metabolites as biomarkers for early diagnosis and prognosis evaluation of PC holds great potential. Intestinal microecological therapy targeting the GM, such as probiotics and fecal microbiota transplantation, may affect the response to chemotherapy and immunotherapy by remodeling the tumor microenvironment, to improve the prognosis. In this paper, we review the role of the GM in PC development, early diagnosis, prognosis assessment, and treatment.
Collapse
Affiliation(s)
- Yu-Meng Qin
- Jingjiang People's Hospital, Taizhou 214500, Jiangsu Province, China
| | - Jie Sha
- Jingjiang People's Hospital, Taizhou 214500, Jiangsu Province, China
| |
Collapse
|
8
|
Myridakis A, Wen Q, Boshier PR, Parker AG, Belluomo I, Handakas E, Hanna GB. Global Urinary Volatolomics with (GC×)GC-TOF-MS. Anal Chem 2023; 95:17170-17176. [PMID: 37967208 PMCID: PMC10688225 DOI: 10.1021/acs.analchem.3c02523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Urinary volatolomics offers a noninvasive approach for disease detection and monitoring. Herein we present an improved methodology for global volatolomic profiling. Wide coverage was achieved by utilizing a multiphase sorbent for volatile organic compound (VOC) extraction. A single, midpolar column gas chromatography (GC) assay yielded substantially higher numbers of monitored VOCs compared to our previously reported single-sorbent method. Multidimensional GC (GC×GC) enhanced further biomarker discovery while data analysis was simplified by using a tile-based approach. At the same time, the required urine volume was reduced 5-fold from 2 to 0.4 mL. The applicability of the methodology was demonstrated in a pancreatic ductal adenocarcinoma cohort where previous findings were confirmed while a series of additional VOCs with diagnostic potential were discovered.
Collapse
Affiliation(s)
- Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- Centre
for Pollution Research & Policy, Environmental Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Qing Wen
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- Department
of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Piers R. Boshier
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Evangelos Handakas
- Medical
Research Council Centre for Environment and Health, School of Public
Health, Imperial College London, London W12 0BZ, United Kingdom
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| |
Collapse
|
9
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|