1
|
Bhullar AS, Jin K, Shi H, Jones A, Hironaka D, Xiong G, Xu R, Guo P, Binzel DW, Shu D. Engineered extracellular vesicles for combinatorial TNBC therapy: SR-SIM-guided design achieves substantial drug dosage reduction. Mol Ther 2024; 32:4467-4481. [PMID: 39369270 PMCID: PMC11638871 DOI: 10.1016/j.ymthe.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has no therapeutic targets, relies on chemotherapeutics for treatment, and is in dire need of novel therapeutic approaches for improved patient outcomes. Extracellular vesicles (EVs) serve as intercellular communicators and have been proposed as ideal drug delivery vehicles. Here, EVs were engineered with RNA nanotechnology to develop TNBC tumor inhibitors. Using super resolved-structured illumination microscopy, EVs were optimized for precise Survivin small interfering RNA (siRNA) conjugated to chemotherapeutics loading and CD44 aptamer ligand decoration, thereby enhancing specificity toward TNBC cells. Conventional treatments typically employ chemotherapy drugs gemcitabine (GEM) and paclitaxel (PTX) at dosages on the order of mg/kg respectively, per injection (intravenous) in mice. In contrast, engineered EVs encapsulating these drugs saw functional tumor growth inhibition at significantly reduced concentrations: 2.2 μg/kg for GEM or 5.6 μg/kg for PTX, in combination with 21.5 μg/kg survivin-siRNA in mice. The result is a substantial decrease in the chemotherapeutic dose required, by orders of magnitude, compared with standard regimens. In vivo and in vitro evaluations in a TNBC orthotopic xenograft mouse model demonstrated the efficacy of this decreased dosage strategy, indicating the potential for decreased chemotherapy-associated toxicity.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA
| | - Haizhu Shi
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Austen Jones
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dalton Hironaka
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Gaofeng Xiong
- Department of Veterinary Biosciences, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy and Comprehensive Cancer Center. The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Williams CMD, Noll JE, Bradey AL, Duggan J, Wilczek VJ, Masavuli MG, Grubor‐Bauk B, Panagopoulos RA, Hewett DR, Mrozik KM, Zannettino ACW, Vandyke K, Panagopoulos V. Myeloperoxidase creates a permissive microenvironmental niche for the progression of multiple myeloma. Br J Haematol 2023; 203:614-624. [PMID: 37699574 PMCID: PMC10952523 DOI: 10.1111/bjh.19102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.
Collapse
Affiliation(s)
- Connor M. D. Williams
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jacqueline E. Noll
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Alanah L. Bradey
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jvaughn Duggan
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Vicki J. Wilczek
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Makutiro G. Masavuli
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideAustralia
| | - Branka Grubor‐Bauk
- Viral Immunology Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideAustralia
| | - Romana A. Panagopoulos
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
- Breast Cancer Research Unit, Discipline of Surgery, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideAustralia
| | - Duncan R. Hewett
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Krzysztof M. Mrozik
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Andrew C. W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Kate Vandyke
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of BiomedicineUniversity of AdelaideAdelaideAustralia
- Solid Tumour Program, Precision Cancer Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
3
|
Yilmaz D, Tuzer M, Unlu MB. Assessing the therapeutic response of tumors to hypoxia-targeted prodrugs with an in silico approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10941-10962. [PMID: 36124576 DOI: 10.3934/mbe.2022511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor hypoxia is commonly recognized as a condition stimulating the progress of the aggressive phenotype of tumor cells. Hypoxic tumor cells inhibit the delivery of cytotoxic drugs, causing hypoxic areas to receive insufficient amounts of anticancer agents, which results in adverse treatment responses. Being such an obstruction to conventional therapies for cancer, hypoxia might be considered a target to facilitate the efficacy of treatments in the resistive environment of tumor sites. In this regard, benefiting from prodrugs that selectively target hypoxic regions remains an effective approach. Additionally, combining hypoxia-activated prodrugs (HAPs) with conventional chemotherapeutic drugs has been used as a promising strategy to eradicate hypoxic cells. However, determining the appropriate sequencing and scheduling of the combination therapy is also of great importance in obtaining favorable results in anticancer therapy. Here, benefiting from a modeling approach, we study the efficacy of HAPs in combination with chemotherapeutic drugs on tumor growth and the treatment response. Different treatment schedules have been investigated to see the importance of determining the optimal schedule in combination therapy. The effectiveness of HAPs in varying hypoxic conditions has also been explored in the study. The model provides qualitative conclusions about the treatment response, as the maximal benefit is obtained from combination therapy with greater cell death for highly hypoxic tumors. It has also been observed that the antitumor effects of HAPs show a hypoxia-dependent profile.
Collapse
Affiliation(s)
- Defne Yilmaz
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mert Tuzer
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648, Japan
| |
Collapse
|
4
|
Aiyappa-Maudsley R, Elsalem L, Ibrahim AIM, Pors K, Martin SG. In vitro radiosensitization of breast cancer with hypoxia-activated prodrugs. J Cell Mol Med 2022; 26:4577-4590. [PMID: 35841287 PMCID: PMC9357624 DOI: 10.1111/jcmm.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
KP167 is a novel hypoxia‐activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU‐55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER0.01 of 1.60–3.42). KP167 induced greater radiosensitization in TNBC (SER0.01 2.53 in MDAMB‐231, 2.28 in MDAMB‐468, 4.55 in MDAMB‐436) and luminal spheroids (SER0.01 1.46 in MCF‐7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER0.01 of 1.56–2.37 compared with AQ4N SER0.01 of 1.13–1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.
Collapse
Affiliation(s)
- Radhika Aiyappa-Maudsley
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, Liverpool, UK
| | - Lina Elsalem
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Ali I M Ibrahim
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
5
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Liapis V, Tieu W, Wittwer NL, Gargett T, Evdokiou A, Takhar P, Rudd SE, Donnelly PS, Brown MP, Staudacher AH. Positron Emission Tomographic Imaging of Tumor Cell Death Using Zirconium-89-Labeled APOMAB® Following Cisplatin Chemotherapy in Lung and Ovarian Cancer Xenograft Models. Mol Imaging Biol 2021; 23:914-928. [PMID: 34231102 PMCID: PMC8578059 DOI: 10.1007/s11307-021-01620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Early detection of tumor treatment responses represents an unmet clinical need with no approved noninvasive methods. DAB4, or its chimeric derivative, chDAB4 (APOMAB®) is an antibody that targets the Lupus associated antigen (La/SSB). La/SSB is over-expressed in malignancy and selectively targeted by chDAB4 in cancer cells dying from DNA-damaging treatment. Therefore, chDAB4 is a unique diagnostic tool that detects dead cancer cells and thus could distinguish between treatment responsive and nonresponsive patients. PROCEDURES In clinically relevant tumor models, mice bearing subcutaneous xenografts of human ovarian or lung cancer cell lines or intraperitoneal ovarian cancer xenografts were untreated or given chemotherapy followed 24h later by chDAB4 radiolabeled with [89Zr]ZrIV. Tumor responses were monitored using bioluminescence imaging and caliper measurements. [89Zr]Zr-chDAB4 uptake in tumor and normal tissues was measured using an Albira SI Positron-Emission Tomography (PET) imager and its biodistribution was measured using a Hidex gamma-counter. RESULTS Tumor uptake of [89Zr]Zr-chDAB4 was detected in untreated mice, and uptake significantly increased in both human lung and ovarian tumors after chemotherapy, but not in normal tissues. CONCLUSION Given that tumors, rather than normal tissues, were targeted after chemotherapy, these results support the clinical development of chDAB4 as a radiodiagnostic imaging agent and as a potential predictive marker of treatment response.
Collapse
Affiliation(s)
- Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Level 9 University of South Australia Health Innovation Building, North Terrace, Adelaide, 5000, Australia.
| | - William Tieu
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Level 9 University of South Australia Health Innovation Building, North Terrace, Adelaide, 5000, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Level 9 University of South Australia Health Innovation Building, North Terrace, Adelaide, 5000, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, SA, 5011, Australia
| | - Prab Takhar
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Level 9 University of South Australia Health Innovation Building, North Terrace, Adelaide, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Level 9 University of South Australia Health Innovation Building, North Terrace, Adelaide, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
7
|
Li Y, Zhao L, Li XF. The Hypoxia-Activated Prodrug TH-302: Exploiting Hypoxia in Cancer Therapy. Front Pharmacol 2021; 12:636892. [PMID: 33953675 PMCID: PMC8091515 DOI: 10.3389/fphar.2021.636892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an important feature of most solid tumors, conferring resistance to radiation and many forms of chemotherapy. However, it is possible to exploit the presence of tumor hypoxia with hypoxia-activated prodrugs (HAPs), agents that in low oxygen conditions undergo bioreduction to yield cytotoxic metabolites. Although many such agents have been developed, we will focus here on TH-302. TH-302 has been extensively studied, and we discuss its mechanism of action, as well as its efficacy in preclinical and clinical studies, with the aim of identifying future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
8
|
Mathuber M, Gutmann M, La Franca M, Vician P, Laemmerer A, Moser P, Keppler BK, Berger W, Kowol CR. Development of a cobalt(iii)-based ponatinib prodrug system. Inorg Chem Front 2021; 8:2468-2485. [PMID: 34046181 PMCID: PMC8129988 DOI: 10.1039/d1qi00211b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase inhibitors have become a central part of modern targeted cancer therapy. However, their curative potential is distinctly limited by both rapid resistance development and severe adverse effects. Consequently, tumor-specific drug activation based on prodrug designs, exploiting tumor-specific properties such as hypoxic oxygen conditions, is a feasible strategy to widen the therapeutic window. After proof-of-principal molecular docking studies, we have synthesized two cobalt(iii) complexes using a derivative of the clinically approved Abelson (ABL) kinase and fibroblast growth factor receptor (FGFR) inhibitor ponatinib. Acetylacetone (acac) or methylacetylacetone (Meacac) have been used as ancillary ligands to modulate the reduction potential. The ponatinib derivative, characterized by an ethylenediamine moiety instead of the piperazine ring, exhibited comparable cell-free target kinase inhibition potency. Hypoxia-dependent release of the ligand from the cobalt(iii) complexes was proven by changed fluorescence properties, enhanced downstream signaling inhibition and increased in vitro anticancer activity in BCR-ABL- and FGFR-driven cancer models. Respective tumor-inhibiting in vivo effects in the BCR-ABL-driven K-562 leukemia model were restricted to the cobalt(iii) complex with the higher reduction potential and confirmed in a FGFR-driven urothelial carcinoma xenograft model. Summarizing, we here present for the first time hypoxia-activatable prodrugs of the clinically approved tyrosine kinase inhibitor ponatinib and a correlation of the in vivo activity with their reduction potential.
Collapse
Affiliation(s)
- Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
| | - Michael Gutmann
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Mery La Franca
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo via Archirafi 32 90123 Palermo Italy
| | - Petra Vician
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Anna Laemmerer
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8A 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Straße 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|
9
|
Tran NH, Foster NR, Mahipal A, Byrne T, Hubbard J, Silva A, Mody K, Alberts S, Borad MJ. Phase IB study of sorafenib and evofosfamide in patients with advanced hepatocellular and renal cell carcinomas (NCCTG N1135, Alliance). Invest New Drugs 2021; 39:1072-1080. [PMID: 33646489 DOI: 10.1007/s10637-021-01090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022]
Abstract
Background Sorafenib (Sor) remains a first-line option for hepatocellular carcinoma (HCC) or refractory renal cell carcinomas (RCC). PLC/PRF/5 HCC model showed upregulation of hypoxia with enhanced efficacy when Sor is combined with hypoxia-activated prodrug evofosfamide (Evo). Methods This phase IB 3 + 3 design investigated 3 Evo dose levels (240, 340, 480 mg/m2 on days 8, 15, 22), combined with Sor 200 mg orally twice daily (po bid) on days 1-28 of a 28-day cycle. Primary objectives included determining maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Sor + Evo. Results Eighteen patients were enrolled (median age 62.5 years; 17 male /1 female; 12 HCC/6 RCC) across three dose levels (DL0: Sor 200 mg bid/Evo 240 mg/m2 [n = 6], DL1:Sor 200 mg bid/Evo 480 mg/m2 [n = 5], DL1a: Sor 200 mg bid/Evo 340 mg/m2 [n = 7]). Two dose-limiting toxicities (DLTs) were reported with Evo 480 mg/m2 (grade 3 mucositis, grade 4 hepatic failure). Grade 3 rash DLT was observed in one patient at Evo 240 mg/m2. No DLTs were observed at Evo 340 mg/m2. MTD and RP2D were established as Sor 200 mg/Evo 340 mg/m2 and Sor 200/Evo 240 mg/m2, respectively. The most common treatment-related adverse events included fatigue, hand-foot syndrome, hypertension, and nausea/vomiting. Two partial responses were observed, one each at DL0 and DL1a.; disease control rate was 55%. Conclusions RP2D was established as sorafenib 200 mg bid + Evo 240 mg/m2. While preliminary anti-tumor activity was observed, future development must account for advances in immunotherapy in HCC/RCC.
Collapse
Affiliation(s)
- Nguyen H Tran
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nathan R Foster
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Thomas Byrne
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA
| | - Joleen Hubbard
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alvin Silva
- Department of Radiology, Mayo Clinic, AZ, Scottsdale, USA
| | - Kabir Mody
- Division of Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Steven Alberts
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA. .,Division of Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA. .,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA. .,Director - Precision Cancer Therapeutics Program, Mayo Clinic Center for Individualized Medicine (CIM) Program Leader - Gene and Virus Therapy Program, Mayo Clinic Cancer Center, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA.
| |
Collapse
|
10
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15 N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2021; 60:2406-2413. [PMID: 33063407 PMCID: PMC7855180 DOI: 10.1002/anie.202011698] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 02/03/2023]
Abstract
Nimorazole belongs to the imidazole-based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15 N3 ]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next-generation MRI-LINAC systems. Herein, we report the first steps to create long-lasting (for tens of minutes) hyperpolarized state on three 15 N sites of [15 N3 ]nimorazole with T1 of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000-fold at 1.4 T (corresponding to P15N of 3.2 %) by 15 N-15 N spin-relayed SABRE-SHEATH hyperpolarization technique, relying on simultaneous exchange of [15 N3 ]nimorazole and parahydrogen on polarization transfer Ir-IMes catalyst. The presented results pave the way to efficient spin-relayed SABRE-SHEATH hyperpolarization of a wide range of imidazole-based antibiotics and chemotherapeutics.
Collapse
Affiliation(s)
- Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
11
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
12
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15
N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Oleg G. Salnikov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Mohammad S. H. Kabir
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Juri G. Gelovani
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- College of Medicine and Health Sciences United Arab Emirates University Al Ain United Arab Emirates
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) 14 Leninskiy Prospekt 119991 Moscow Russia
| |
Collapse
|
13
|
Deng S, Krutilina RI, Wang Q, Lin Z, Parke DN, Playa HC, Chen H, Miller DD, Seagroves TN, Li W. An Orally Available Tubulin Inhibitor, VERU-111, Suppresses Triple-Negative Breast Cancer Tumor Growth and Metastasis and Bypasses Taxane Resistance. Mol Cancer Ther 2019; 19:348-363. [PMID: 31645441 DOI: 10.1158/1535-7163.mct-19-0536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/27/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15% of breast cancer cases in the United States. TNBC has poorer overall prognosis relative to other molecular subtypes due to rapid onset of drug resistance to conventional chemotherapies and increased risk of visceral metastases. Taxanes like paclitaxel are standard chemotherapies that stabilize microtubules, but their clinical efficacy is often limited by drug resistance and neurotoxicities. We evaluated the preclinical efficacy of a novel, potent, and orally bioavailable tubulin inhibitor, VERU-111, in TNBC models. VERU-111 showed potent cytotoxicity against TNBC cell lines, inducing apoptosis and cell-cycle arrest in a concentration-dependent manner. VERU-111 also efficiently inhibited colony formation, cell migration, and invasion. Orally administered VERU-111 inhibited MDA-MB-231 xenograft growth in a dose-dependent manner, with similar efficacies to paclitaxel, but without acute toxicity. VERU-111 significantly reduced metastases originating from the mammary fat pad into lung, liver, and kidney metastasis in an experimental metastasis model. Moreover, VERU-111, but not paclitaxel, suppressed growth of luciferase-labeled, taxane-resistant, patient-derived metastatic TNBC tumors. In this model, VERU-111 repressed growth of preestablished axillary lymph node metastases and lung, bone, and liver metastases at study endpoint, whereas paclitaxel enhanced liver metastases relative to vehicle controls. Collectively, these studies strongly suggest that VERU-111 is not only a potent inhibitor of aggressive TNBC phenotypes, but it is also efficacious in a taxane-resistant model of metastatic TNBC. Thus, VERU-111 is a promising new generation of tubulin inhibitor for the treatment of TNBC and may be effective in patients who progress on taxanes.Results presented in this study demonstrate the efficacy of VERU-111 in vivo and provide strong rationale for future development of VERU-111 as an effective treatment for metastatic breast cancer.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Zongtao Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hilaire C Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee. .,Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
14
|
Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemans R, Theys J, Yaromina A, Lambin P, Verhaegen F, Dubois LJ. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol 2019; 141:247-255. [PMID: 31431383 PMCID: PMC6913516 DOI: 10.1016/j.radonc.2019.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Stefan J van Hoof
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
15
|
DiGiacomo JW, Gilkes DM. Therapeutic Strategies to Block the Hypoxic Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:141-157. [DOI: 10.1007/978-3-030-12734-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease. Int J Mol Sci 2018; 19:ijms19113523. [PMID: 30423905 PMCID: PMC6274963 DOI: 10.3390/ijms19113523] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and is associated with an increased risk of metastasis and a poor prognosis. Recent imaging techniques revealed that bone marrow contains a quite hypoxic microenvironment. Low oxygen levels activate hypoxia signaling pathways such as hypoxia-inducible factors, which play critical roles in the key stages of metastatic dissemination including angiogenesis, epithelial-mesenchymal transition, invasion, maintenance of cancer stem cells, tumor cell dormancy, release of extracellular vesicles, and generation of pre-metastatic niches. Hypoxia also affects bone cells, such as osteoblasts and osteoclasts, and immune cells, which also act to support the development and progression of bone metastases. Paradoxically, hypoxia and related signaling molecules are recognized as high-priority therapeutic targets and many candidate drugs are currently under preclinical and clinical investigation. The present review focuses on our current knowledge of the potential roles of hypoxia in cancer metastasis to bone by considering the interaction between metastatic cancer cells and the bone microenvironment. Current therapeutic approaches targeting hypoxia are also described.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara-Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
17
|
Minegaki T, Koiki S, Douke Y, Yamane C, Suzuki A, Mori M, Tsujimoto M, Nishiguchi K. Augmentation of the cytotoxic effects of nitrogen-containing bisphosphonates in hypoxia. ACTA ACUST UNITED AC 2018; 70:1040-1047. [PMID: 29761837 DOI: 10.1111/jphp.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/16/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Tumour hypoxia is a major obstacle in cancer therapy that leads to poor prognosis. Therefore, the development of cancer treatments that are effective in hypoxia is necessary. Nitrogen-containing bisphosphonates (N-BPs), which are used to treat bone disease, are cytotoxic to several cancer cells in normoxia. Therefore, we investigated the cytotoxicity of N-BPs in cancer cells in hypoxia. METHODS We studied the cytotoxicities of N-BPs, statins and anticancer drugs in human cancer cells under hypoxic conditions (1% O2 ). The expression levels of enzymes in the mevalonate pathway in hypoxia were measured by real-time reverse transcription polymerase chain reaction and Western blotting. KEY FINDINGS In hypoxia, cell growth inhibition by 5-fluorouracil and cisplatin was not changed as compared to that in normoxia; however, cell growth inhibition by N-BPs and via zoledronate-induced apoptosis was higher in hypoxia than that in normoxia. Furthermore, geranylgeraniol completely inhibited the growth inhibitory effects of zoledronate. Additionally, the mRNA and protein levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase significantly decreased in hypoxia. Moreover, simvastatin potentiated the growth inhibitory effect of zoledronate. CONCLUSIONS The cytotoxicity of N-BPs, but not 5-fluorouracil and cisplatin, is potentiated in hypoxia, through the loss of HMG-CoA reductase function. N-BPs may be effective against cancer in normoxia and hypoxia.
Collapse
Affiliation(s)
- Tetsuya Minegaki
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Saya Koiki
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yutaro Douke
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chihiro Yamane
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ai Suzuki
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Misato Mori
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masayuki Tsujimoto
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohshi Nishiguchi
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
18
|
Cox TR, Erler JT, Rumney RMH. Established Models and New Paradigms for Hypoxia-Driven Cancer-Associated Bone Disease. Calcif Tissue Int 2018; 102:163-173. [PMID: 29098360 PMCID: PMC5805797 DOI: 10.1007/s00223-017-0352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
The five-year survival rate for primary bone cancers is ~ 70% while almost all cases of secondary metastatic bone cancer are terminal. Hypoxia, the deficiency of oxygen which occurs as the rate of tumour growth exceeds the supply of vascularisation, is a key promoter of tumour progression. Hypoxia-driven effects in the primary tumour are wide ranging including changes in gene expression, dysregulation of signalling pathways, resistance to chemotherapy, neovascularisation, increased tumour cell proliferation and migration. Paget's seed and soil theory states that for a metastasising tumour cell 'the seed' it requires the correct microenvironment 'soil' to colonise. Why and how metastasising tumour cells colonise the bone is a complex and intriguing problem. However, once present tumour cells are able to disrupt bone homeostasis through increasing osteoclast activity and downregulating osteoblast function. Osteoclast resorption releases growth factors from the bone matrix that subsequently contribute to the proliferation of invasive tumour cells creating the vicious cycle of bone loss and metastatic cancer progression. Recently, we have shown that hypoxia increases expression and release of lysyl oxidase (LOX) from primary mammary tumours, which in turn disrupts bone homeostasis to favour osteolytic degradation to create pre-metastatic niches in the bone microenvironment. We also demonstrated how treatment with bisphosphonates could block this cancer-induced bone remodelling and reduce secondary bone metastases. This review describes the roles of hypoxia in primary tumour progression to metastasis, with a focus on key signalling pathways and treatment options to reduce patient morbidity and increase survival.
Collapse
Affiliation(s)
- Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Janine T Erler
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Robin M H Rumney
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
19
|
Rausch LK, Netzer NC, Hoegel J, Pramsohler S. The Linkage between Breast Cancer, Hypoxia, and Adipose Tissue. Front Oncol 2017; 7:211. [PMID: 28993797 PMCID: PMC5622311 DOI: 10.3389/fonc.2017.00211] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The development of breast cancer cells is linked to hypoxia. The hypoxia-induced factor HIF-1α influences metastasis through neovascularization. Hypoxia seems to decrease the responsiveness to hormonal treatment due to loss of estrogen receptors (ERs). Obesity is discussed to increase hypoxia in adipocytes, which promotes a favorable environment for tumor cells in mammary fat tissue, whereas, tumor cells profit from good oxygen supply and are influenced by its deprivation as target regions within tumors show. This review gives an overview of the current state on research of hypoxia and breast cancer in human adipose tissue. METHODS A systematic literature search was conducted on PubMed (2000-2016) by applying hypoxia and/or adipocytes and breast cancer as keywords. Review articles were excluded as well as languages other than English or German. There was no restriction regarding the study design or type of breast cancer. A total of 35 papers were found. Eight studies were excluded due to missing at least two of the three keywords. One paper was removed due to Russian language, and one was dismissed due to lack of adherence. Seven papers were identified as reviews. After applying exclusion criteria, 18 articles were eligible for inclusion. RESULTS Two articles describe the impairment of mammary epithelial cell polarization through hypoxic preconditioning. A high amount of adipocytes enhances cancer progression due to the increased expression of HIF-1α which causes the loss of ER α protein as stated in four articles. Four articles analyzed that increased activation of HIF's induces a series of transcriptions resulting in tumor angiogenesis. HIF inhibition, especially when combined with cytotoxic chemotherapy, holds strong potential for tumor suppression as stated in further four articles. In two articles there is evidence of a strong connection between hypoxia, oxidative stress and a poor prognosis for breast cancer via HIF regulated pathways. Acute hypoxia seems to normalize the microenvironment in breast cancer tissue and has proven to affect tumor growth positively as covered in two articles. CONCLUSION This review indicates that the development of breast cancer is influenced by hypoxia. A high amount of adipocytes enhances cancer progression due to the increased expression of HIF-1α.
Collapse
Affiliation(s)
- Linda K Rausch
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, Bad Aibling, Germany.,Department of Sports Science, University Innsbruck, Innsbruck, Austria
| | - Nikolaus C Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, Bad Aibling, Germany.,Department of Sports Science, University Innsbruck, Innsbruck, Austria.,Division of Sports Medicine and Rehabilitation, Department of Medicine, University Ulm, Ulm, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Stephan Pramsohler
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, Bad Aibling, Germany
| |
Collapse
|
20
|
Liapis V, Zysk A, DeNichilo M, Zinonos I, Hay S, Panagopoulos V, Shoubridge A, Difelice C, Ponomarev V, Ingman W, Atkins GJ, Findlay DM, Zannettino ACW, Evdokiou A. Anticancer efficacy of the hypoxia-activated prodrug evofosfamide is enhanced in combination with proapoptotic receptor agonists against osteosarcoma. Cancer Med 2017; 6:2164-2176. [PMID: 28799237 PMCID: PMC5603834 DOI: 10.1002/cam4.1115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia also leads to treatment opportunities as demonstrated by the development of compounds that target regions of hypoxia within tumors. Evofosfamide is a hypoxia‐activated prodrug that is created by linking the hypoxia‐seeking 2‐nitroimidazole moiety to the cytotoxic bromo‐isophosphoramide mustard (Br‐IPM). When evofosfamide is delivered to hypoxic regions of tumors, the DNA cross‐linking toxin, Br‐IPM, is released leading to cell death. This study assessed the anticancer efficacy of evofosfamide in combination with the Proapoptotic Receptor Agonists (PARAs) dulanermin and drozitumab against human osteosarcoma in vitro and in an intratibial murine model of osteosarcoma. Under hypoxic conditions in vitro, evofosfamide cooperated with dulanermin and drozitumab, resulting in the potentiation of cytotoxicity to osteosarcoma cells. In contrast, under the same conditions, primary human osteoblasts were resistant to treatment. Animals transplanted with osteosarcoma cells directly into their tibiae developed mixed osteosclerotic/osteolytic bone lesions and consequently developed lung metastases 3 weeks post cancer cell transplantation. Tumor burden in the bone was reduced by evofosfamide treatment alone and in combination with drozitumab and prevented osteosarcoma‐induced bone destruction while also reducing the growth of pulmonary metastases. These results suggest that evofosfamide may be an attractive therapeutic agent, with strong anticancer activity alone or in combination with either drozitumab or dulanermin against osteosarcoma.
Collapse
Affiliation(s)
- Vasilios Liapis
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Aneta Zysk
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Mark DeNichilo
- Vascular Biology and Cell Trafficking Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Irene Zinonos
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Shelley Hay
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Vasilios Panagopoulos
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Alexandra Shoubridge
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Christopher Difelice
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Wendy Ingman
- Discipline of Surgery, School of Medicine at The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Gerald J Atkins
- Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, South Australia, Australia
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew C W Zannettino
- School of Medical Sciences, Myeloma Research Laboratory Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Faculty of Health Science, University of Adelaide, Adelaide, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Woodville, South Australia, Australia
| |
Collapse
|
21
|
Xu S, Yao H, Pei L, Hu M, Li D, Qiu Y, Wang G, Wu L, Yao H, Zhu Z, Xu J. Design, synthesis, and biological evaluation of NAD(P)H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation. Eur J Med Chem 2017; 132:310-321. [DOI: 10.1016/j.ejmech.2017.03.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/22/2017] [Indexed: 02/07/2023]
|
22
|
Phase I study of pazopanib plus TH-302 in advanced solid tumors. Cancer Chemother Pharmacol 2017; 79:611-619. [PMID: 28238078 DOI: 10.1007/s00280-017-3256-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE To define the maximum tolerated dose (MTD), recommended phase II dose (RPTD), and assess safety and tolerability for the combination of pazopanib plus TH-302, an investigational hypoxia-activated prodrug (HAP), in adult patients with advanced solid tumors. METHODS This was an open-label, non-randomized, single-center, phase I trial consisting 2 stages. Stage 1 was a standard "3 + 3" dose escalation design to determine safety and the RPTD for TH-302 plus pazopanib combination. Stage 2 was an expanded cohort to better describe the tolerability and toxicity profile at the MTD. Pazopanib was orally dosed at 800 mg daily on days 1-28 for all cohorts. TH-302 was administered intravenously on days 1, 8 and 15 of a 28-day cycle at doses of 340 mg/m2 (cohort 1) or 480 mg/m2 (cohort 2). Dose limiting toxicity (DLT) was assessed in the first 28-day cycle. Efficacy was assessed every 2 cycles. RESULTS Thirty patients were enrolled between December 2011 and September 2013. In the dose escalation stage, 7 patients were enrolled in the 340 mg/m2 TH-302 cohort and 6 patients in the 480 mg/m2 TH-302 cohort. Ten patients were evaluable for DLT. DLTs included grade 2 intolerable esophagitis (n = 1) in the 340 mg/m2 TH-302 cohort, and grade 3 vaginal inflammation (n = 1) and grade 3 neutropenia with grade 3 thrombocytopenia (n = 1, same patient) in the 480 mg/m2 TH-302 cohort. The 340 mg/m2 TH-302 cohort was determined to be MTD and RPTD. The most common treatment-related adverse events were hematologic (anemia, neutropenia, and thrombocytopenia), nausea/vomiting, palmar-plantar erythrodysesthesia syndrome, constipation, fatigue, mucositis, anorexia, pain, and hypertension. Partial response (PR) was observed in 10% (n = 3) of patients, stable disease (SD) in 57% (n = 17), and progressive disease (PD) in 23% (n = 7). Due to toxicity, 3 patients were discontinued from study drug prior to first radiographic assessment but were included in these calculations. Disease control ≥6 months was observed in 37% of patients (n = 11). CONCLUSIONS The RPTD for this novel combination is pazopanib 800 mg daily on days 1-28 plus TH-302 340 mg/m2 on days 1, 8 and 15 of each 28-day cycle. Preliminary activity was seen in treatment-refractory cancers and supports potential value of co-targeting tumor angiogenesis and tumor hypoxia.
Collapse
|
23
|
Baran N, Konopleva M. Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy. Clin Cancer Res 2017; 23:2382-2390. [PMID: 28137923 DOI: 10.1158/1078-0432.ccr-16-0895] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
Hypoxia is a known feature of aggressive solid tumors as well as a critical hallmark of the niche in aggressive hematologic malignances. Hypoxia is associated with insufficient response to standard therapy, resulting in disease progression and curtailed patients' survival through maintenance of noncycling cancer stem-like cells. A better understanding of the mechanisms and signaling pathways induced by hypoxia is essential to overcoming these effects. Recent findings demonstrate that bone marrow in the setting of hematologic malignancies is highly hypoxic, and that progression of the disease is associated with expansion of hypoxic niches and stabilization of the oncogenic hypoxia-inducible factor-1alpha (HIF1α). Solid tumors have also been shown to harbor hypoxic areas, maintaining survival of cancer cells via the HIF1α pathway. Developing new strategies for targeting hypoxia has become a crucial approach in modern cancer therapy. The number of preclinical and clinical trials targeting low-oxygen tumor compartments or the hypoxic bone marrow niche via hypoxia-activated prodrugs is increasing. This review discusses the development of the hypoxia-activated prodrugs and their applicability in treating both hematologic malignancies and solid tumors. Clin Cancer Res; 23(10); 2382-90. ©2017 AACR.
Collapse
Affiliation(s)
- Natalia Baran
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
24
|
Liapis V, Zinonos I, Labrinidis A, Hay S, Ponomarev V, Panagopoulos V, Zysk A, DeNichilo M, Ingman W, Atkins GJ, Findlay DM, Zannettino ACW, Evdokiou A. Anticancer efficacy of the hypoxia-activated prodrug evofosfamide (TH-302) in osteolytic breast cancer murine models. Cancer Med 2016; 5:534-45. [PMID: 26749324 PMCID: PMC4799961 DOI: 10.1002/cam4.599] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022] Open
Abstract
Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia offers treatment opportunities, exemplified by the development of compounds that target hypoxic regions within tumors. Evofosfamide (TH‐302) is a prodrug created by the conjugation of 2‐nitroimidazole to bromo‐isophosphoramide mustard (Br‐IPM). When evofosfamide is delivered to hypoxic regions, the DNA cross‐linking effector, Br‐IPM, is released. This study assessed the cytotoxic activity of evofosfamide in vitro and its antitumor activity against osteolytic breast cancer either alone or in combination with paclitaxel in vivo. A panel of human breast cancer cell lines were treated with evofosfamide under hypoxia and assessed for cell viability. Osteolytic MDA‐MB‐231‐TXSA cells were transplanted into the mammary fat pad, or into tibiae of mice, allowed to establish and treated with evofosfamide, paclitaxel, or both. Tumor burden was monitored using bioluminescence, and cancer‐induced bone destruction was measured using micro‐CT. In vitro, evofosfamide was selectively cytotoxic under hypoxic conditions. In vivo evofosfamide was tumor suppressive as a single agent and cooperated with paclitaxel to reduce mammary tumor growth. Breast cancer cells transplanted into the tibiae of mice developed osteolytic lesions. In contrast, treatment with evofosfamide or paclitaxel resulted in a significant delay in tumor growth and an overall reduction in tumor burden in bone, whereas combined treatment resulted in a significantly greater reduction in tumor burden in the tibia of mice. Evofosfamide cooperates with paclitaxel and exhibits potent tumor suppressive activity against breast cancer growth in the mammary gland and in bone.
Collapse
Affiliation(s)
- Vasilios Liapis
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Irene Zinonos
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Agatha Labrinidis
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Shelley Hay
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Vasilios Panagopoulos
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Aneta Zysk
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Mark DeNichilo
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| | - Wendy Ingman
- Discipline of Surgery, School of Medicine at The Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Gerald J Atkins
- Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, South Australia, Australia
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew C W Zannettino
- School of Medical Sciences, Myeloma Research Laboratory Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute and Centre for Personalised Cancer Medicine, University of Adelaide Woodville, Woodville, South Australia, Australia
| |
Collapse
|