1
|
Lin S, Liao N, Li X, Yang L, He YY, Tang YL, Wan WQ, Jia W, Zhang YJ, Kong Q, Long X, Lan X, Ling YY, Lin D, Zhang XL, Wen C, Li CK, Xu HG. Prognosis of pediatric BCP-ALL with IKZF1 deletions and impact of intensive chemotherapy: Results of SCCLG-2016 study. Eur J Haematol 2024; 113:357-370. [PMID: 38847134 DOI: 10.1111/ejh.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND IKZF1 deletion (IKZF1del) is associated with poor prognosis in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). But the prognosis of IKZF1del combined with other prognostic stratification factors remains unclear. Whether intensified treatment improves BCP-ALL prognosis has not been determined. METHODS A retrospective analysis was performed on 1291 pediatric patients diagnosed with BCP-ALL and treated with the South China Children's Leukemia 2016 protocol. Patients were stratified based on IKZF1 status for comparison of characteristics and outcome. Additionally, IKZF1del patients were further divided based on chemotherapy intensity for outcome assessments. RESULTS The BCP-ALL pediatric patients with IKZF1del in south China showed poorer early response. Notably, the DFS and OS for IKZF1del patients were markedly lower than IKZF1wt group (3-year DFS: 88.7% [95% CI: 83.4%-94.0%] vs. 93.5% [95% CI: 92.0%-94.9%], P = .021; 3-year OS: 90.7% [95% CI: 85.8% to 95.6%] vs. 96.1% [95% CI: 95% to 97.2%, P = .003]), with a concurrent increase in 3-year TRM (6.4% [95% CI: 2.3%-10.5%] vs. 2.9% [95% CI: 1.9%-3.8%], P = .025). However, the 3-year CIR was comparable between the two groups (5.7% [95% CI: 1.8%-9.5%] vs. 3.7% [95% CI: 2.6%-4.7%], P = .138). Subgroup analyses reveal no factor significantly influenced the prognosis of the IKZF1del cohort. Noteworthy, intensive chemotherapy improved DFS from 85.7% ± 4.1% to 94.1% ± 0.7% in IKZF1del group (P = .084). Particularly in BCR::ABL positive subgroup, the 3-year DFS was remarkably improved from 53.6% ± 20.1% with non-intensive chemotherapy to 100% with intensive chemotherapy (P = .026). CONCLUSIONS Pediatric BCP-ALL patients with IKZF1del in South China manifest poor outcomes without independent prognostic significance. While no factor substantially alters the prognosis in the IKZF1del group. Intensified chemotherapy may reduce relapse rates and improve DFS in patients with IKZF1del subset, particularly in IKZFdel patients with BCR::ABL positive.
Collapse
Affiliation(s)
- Shaofen Lin
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Liao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinyu Li
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Lai Tang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu-Qing Wan
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenguang Jia
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ya-Jie Zhang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Kong
- Department of Pediatrics, The Third Affiliated Hospital, SUN Yat-sen University, Guangzhou, China
| | - Xingjiang Long
- Department of Pediatrics, Liuzhou People's Hospital, Liuzhou, China
| | - Xiang Lan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ya-Yun Ling
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danna Lin
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Li Zhang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Wen
- Division of Hematology and Tumor, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chi-Kong Li
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong-Gui Xu
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Feng L, Zhang H, Liu T. Multifaceted roles of IKZF1 gene, perspectives from bench to bedside. Front Oncol 2024; 14:1383419. [PMID: 38978740 PMCID: PMC11228169 DOI: 10.3389/fonc.2024.1383419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.
Collapse
Affiliation(s)
| | | | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Gupta DG, Varma N, Abdulkadir SA, Sreedharanunni S, Sachdeva MUS, Naseem S, Bose P, Binota J, Malhotra P, Khadwal A, Trehan A, Varma S. A surrogate molecular approach for the detection of Philadelphia chromosome-like B-acute lymphoblastic leukemia. Cancer 2024; 130:713-726. [PMID: 37819686 DOI: 10.1002/cncr.35051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/13/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Philadelphia chromosome (Ph)-like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. METHODS Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. RESULTS Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p < .05), male preponderance (p < .05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p < .05) in Ph-like ALL cases. CONCLUSIONS This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. PLAIN LANGUAGE SUMMARY Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)-like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology & Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sarki Abba Abdulkadir
- Department of Urology & Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Paolino J, Tsai HK, Harris MH, Pikman Y. IKZF1 Alterations and Therapeutic Targeting in B-Cell Acute Lymphoblastic Leukemia. Biomedicines 2024; 12:89. [PMID: 38255194 PMCID: PMC10813044 DOI: 10.3390/biomedicines12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
IKZF1 encodes the transcription factor IKAROS, a zinc finger DNA-binding protein with a key role in lymphoid lineage development. IKAROS plays a critical role in the development of lineage-restricted mature lymphocytes. Deletions within IKZF1 in B-cell acute lymphoblastic leukemia (B-ALL) lead to a loss of normal IKAROS function, conferring leukemic stem cell properties, including self-renewal and subsequent uncontrolled growth. IKZF1 deletions are associated with treatment resistance and inferior outcomes. Early identification of IKZF1 deletions in B-ALL may inform the intensification of therapy and other potential treatment strategies to improve outcomes in this high-risk leukemia.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Harrison K. Tsai
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA (M.H.H.)
| | - Marian H. Harris
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA (M.H.H.)
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Angelakakis G, Varkhedi M, Dabkowski TR, Diaz MJ, Yeagley M, Blanck G. B-cell ALL with SOX11 gene amplification associates with a worse outcome. Cell Cycle 2024; 23:36-42. [PMID: 38350028 PMCID: PMC11005798 DOI: 10.1080/15384101.2024.2306756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Copy number variation (CNV) of certain genes in pediatric Acute Lymphoblastic Leukemia (ALL) impacts gene expression levels. Here, we aimed to investigate the potential prognostic utility of CNVs in pediatric B-ALL and T-ALL. Using genomics files representing cases from the TARGET-ALL-P2 dataset, genes commonly involved in ALL development were analyzed for CNVs. Case IDs representing increased copy numbers for SOX11, PDGFRB, and MDK represented a worse overall survival probability specifically for B-ALL (logrank p=0.021, p=0.0052, p=0.019, respectively). These data support the continued investigation of using CNVs for clinical prognostic biomarkers for pediatric B-ALL.
Collapse
Affiliation(s)
- George Angelakakis
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Toriana R. Dabkowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael J. Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
6
|
Kimura H, Onozawa M, Yoshida S, Miyashita N, Yokoyama S, Matsukawa T, Hirabayashi S, Goto H, Endo T, Oguri S, Fujisawa S, Mori A, Kondo T, Hidaka D, Okada K, Ota S, Kakinoki Y, Tsutsumi Y, Yamamoto S, Miyagishima T, Hashiguchi J, Nagashima T, Ibata M, Wakasa K, Haseyama Y, Fujimoto K, Ishihara T, Sakai H, Teshima T. Dominant-negative type of IKZF1 deletion showed a favorable prognosis in adult B-cell acute lymphoblastic leukemia. Ann Hematol 2023; 102:3103-3113. [PMID: 37597110 DOI: 10.1007/s00277-023-05405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
IKZF1 deletion is a recurrent genomic alteration in B-cell acute lymphoblastic leukemia (B-ALL) and is divided into dominant-negative (DN) and loss of function (LOF) deletions. The prognostic impact of each deletion has not been fully elucidated. We retrospectively analyzed 117 patients with adult B-ALL including 60 patients with BCR::ABL1-positive B-ALL and 57 patients with BCR::ABL1-negative B-ALL by the fluorescence in situ hybridization (FISH) method for IKZF1 deletion and multiplex PCR for the 4 most common IKZF1 deletions (∆4-7, ∆2-7, ∆2-8, and ∆4-8). Samples, in which IKZF1 deletion was detected by FISH but a specific type of deletion was not identified by the PCR, were categorized as "other." Patients were classified into a DN group that had at least 1 allele of ∆4-7 (n = 23), LOF and other group (n = 40), and wildtype group (n = 54). DN type IKZF1 deletions were found in 33.3% of BCR::ABL1-positive cases and 5.2% of BCR::ABL1-negative cases. LOF and other type IKZF1 deletions were found in 43.4% of BCR::ABL1-positive cases and 24.6% of BCR::ABL1-negative cases. Patients with the DN group showed significantly higher overall survival (OS) than that of the LOF and other and WT groups (P = 0.011). Multivariate analysis including age, WBC counts, complex karyotype, and DN type IKZF1 deletion showed that the DN type of IKZF1 deletion (HR = 0.22, P = 0.013) had a positive impact and age ≥ 65 (HR = 1.92, P = 0.029) had a negative impact on OS. The prognostic impact of IKZF1 deletion depends on the type of deletion and DN type of IKZF1 deletion showed better prognosis in adult B-ALL patients.Clinical trial registration This study was part of a prospective observational study (Hokkaido Leukemia Net, UMIN000048611). It was conducted in compliance with ethical principles based on the Helsinki Declaration and was approved by the institutional review board of Hokkaido University Hospital (#015-0344).
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan.
| | - Shota Yoshida
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Naoki Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | | | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Satoshi Oguri
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Kohei Okada
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Satoshi Yamamoto
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | | | - Junichi Hashiguchi
- Department of Internal Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Takahiro Nagashima
- Department of Internal Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Kentaro Wakasa
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | | | - Hajime Sakai
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
7
|
Gupta DG, Varma N, Sreedharanunni S, Abdulkadir SA, Naseem S, Sachdeva MUS, Binota J, Bose P, Malhotra P, Khadwal A, Varma S. 'Evaluation of adverse prognostic gene alterations & MRD positivity in BCR::ABL1-like B-lineage acute lymphoblastic leukaemia patients, in a resource-constrained setting. Br J Cancer 2023; 129:143-152. [PMID: 37156894 PMCID: PMC10307811 DOI: 10.1038/s41416-023-02294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Early detection of BCR::ABL1-like ALL could impact treatment management and improve the overall survival/outcome. BCR::ABL1-like ALL cases are characterised by diverse genetic alterations activating cytokine receptors and kinase signalling. Its detection is still an unmet need in low-middle-income countries due to the unavailability of a patented TLDA assay. METHODS This study's rationale is to identify BCR::ABL1-like ALLs using the PHi-RACE classifier, followed by the characterisation of underlying adverse genetic alterations in recurrent gene abnormalities negative (RGAneg) B-ALLs (n = 108). RESULTS We identified 34.25% (37/108) BCR::ABL1-like ALLs using PHi-RACE classifier, characterised by TSLPR/CRLF2 expression (11.58%), IKZF1 (Δ4-7) deletion (18.9%) and chimeric gene fusions (34.61%). In overexpressed TSLPR/CRLF2 BCR::ABL1-like ALLs, we identified 33.33% (1/3) CRLF2::IGH and 33.33% (1/3) EPOR::IGH rearrangements with concomitant JAK2 mutation R683S (50%). We identified 18.91% CD13 (P = 0.02) and 27.02% CD33 (P = 0.05) aberrant myeloid markers positivity, which was significantly higher in BCR::ABL1-like ALLs compared to non-BCR::ABL1-like ALLs. MRD positivity was considerably higher (40% in BCR::ABL1-like vs. 19.29% in non-BCR::ABL1-like ALLs). CONCLUSIONS With this practical approach, we reported a high incidence of BCR::ABL1-like ALLs, and a lower frequency of CRLF2 alteration & associated CGFs. Recognising this entity, early at diagnosis is crucial to optimise personalised treatment strategies.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India.
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Sarki Abba Abdulkadir
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Alka Khadwal
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, Chandigarh, 160012, India
| |
Collapse
|
8
|
Srinivasan S, Ramanathan S, Kumar S, Peyam S, Radhakrishnan V. Prevalence and prognostic significance of IKZF1 deletion in paediatric acute lymphoblastic leukemia: A systematic review and meta-analysis. Ann Hematol 2023:10.1007/s00277-023-05250-1. [PMID: 37154889 DOI: 10.1007/s00277-023-05250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
IKZF1 (IKAROS family Zinc Finger 1) alteration is an essential regulator of both T- and B-cell lineage specification with leukemogenic potential. IKZF1 deletion have been described in childhood acute lymphoblastic leukemia (ALL) with varying prevalence often influenced by underlying cytogenetics and also shown to have diverse prognostic significance. We aimed to evaluate the prevalence and prognostic significance of IKZF1 deletion among childhood ALL. Electronic databases of MEDLINE, EMBASE and SCOPUS were searched and 32 studies found eligible. Estimated prevalence of IKZF1 deletion among BCR::ABL1 negative and BCR::ABL1 positive ALL patients was 14% (95%CI:13-16%, I2 = 79%; 26 studies) and 63% (95%CI:59-68% I2 = 42%; 10 studies) respectively. Most common site of IKZF1 deletion was whole chromosome (exon1-8) deletion in 32.3% (95%CI: 23.8-40.7%) followed by exon 4-7 deletion in 28.6% (95%CI: 19.7-37.5%). A positive minimal residual disease at the end of induction was more common among patients with IKZF1 deletion, odds ratio: 3.09 (95%CI:2.3-4.16, I2 = 54%; 15 studies). Event-free survival and overall survival were significantly worse for IKZF1 deletion, hazard ratio (HR): 2.10 (95%CI:1.90-2.32, I2 = 28%; 31 studies) and HR: 2.38 (95%CI:1.93-2.93, I2 = 40; 15 studies) respectively. In summary, the current meta-analysis highlights the frequency of IKZF1 deletion and its negative impact on survival in childhood ALL. Further studies exploring the influence of IKZF1 deletion in the presence of classical cytogenetic and other copy number alterations would further help in characterising its prognostic role.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Department of Pediatric Oncology, ACTREC/Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Parel, Mumbai, 400 012, Maharashtra, India.
| | - Subramaniam Ramanathan
- Department of Pediatric Oncology and BMT, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Shathish Kumar
- Department of Anaesthesiology, Manipal Hospital Whitefield, Bangalore, India
| | - Srinivasan Peyam
- Department of Pediatrics, Pediatric Hematology-oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
9
|
Østergaard A, Enshaei A, Pieters R, Vora A, Horstmann MA, Escherich G, Johansson B, Heyman M, Schmiegelow K, Hoogerbrugge PM, den Boer ML, Kuiper RP, Moorman AV, Boer JM, van Leeuwen FN. The Prognostic Effect of IKZF1 Deletions in ETV6:: RUNX1 and High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e875. [PMID: 37153875 PMCID: PMC10162793 DOI: 10.1097/hs9.0000000000000875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/09/2023] [Indexed: 05/10/2023] Open
Abstract
IKZF1 deletions are an established prognostic factor in childhood acute lymphoblastic leukemia (ALL). However, their relevance in patients with good risk genetics, namely ETV6::RUNX1 and high hyperdiploid (HeH), ALL remains unclear. We assessed the prognostic impact of IKZF1 deletions in 939 ETV6::RUNX1 and 968 HeH ALL patients by evaluating data from 16 trials from 9 study groups. Only 3% of ETV6::RUNX1 cases (n = 26) were IKZF1-deleted; this adversely affected survival combining all trials (5-year event-free survival [EFS], 79% versus 92%; P = 0.02). No relapses occurred among the 14 patients with an IKZF1 deletion treated on a minimal residual disease (MRD)-guided protocols. Nine percent of HeH cases (n = 85) had an IKZF1 deletion; this adversely affected survival in all trials (5-year EFS, 76% versus 89%; P = 0.006) and in MRD-guided protocols (73% versus 88%; P = 0.004). HeH cases with an IKZF1 deletion had significantly higher end of induction MRD values (P = 0.03). Multivariate Cox regression showed that IKZF1 deletions negatively affected survival independent of sex, age, and white blood cell count at diagnosis in HeH ALL (hazard ratio of relapse rate [95% confidence interval]: 2.48 [1.32-4.66]). There was no evidence to suggest that IKZF1 deletions affected outcome in the small number of ETV6::RUNX1 cases in MRD-guided protocols but that they are related to higher MRD values, higher relapse, and lower survival rates in HeH ALL. Future trials are needed to study whether stratifying by MRD is adequate for HeH patients or additional risk stratification is necessary.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, United Kingdom
| | - Martin A. Horstmann
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Medical Center Hamburg, Research Institute Children’s Cancer Center, Hamburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Mats Heyman
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Denmark
| | | | - Monique L. den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Genetics, University Medical Center Utrecht, Netherlands
| | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | |
Collapse
|
10
|
Gupta DG, Varma N, Kumar A, Naseem S, Sachdeva MUS, Sreedharanunni S, Binota J, Bose P, Khadwal A, Malhotra P, Varma S. Genomic and proteomic characterization of Philadelphia-like B-lineage acute lymphoblastic leukemia: A report of Indian patients. Cancer 2023; 129:1217-1226. [PMID: 36738086 DOI: 10.1002/cncr.34665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The gold standard for the identification of Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) patients is gene expression profiling. Because of its diverse nature, its identification is extremely difficult and expensive. On the genomic and proteomic landscape of Ph-like ALL patients, there is a paucity of published literature from developing countries. METHODS The authors used digital barcoded nCounter NanoString gene expression profiling for its detection, followed by molecular and proteomic characterization using fluorescence in situ hybridization and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The authors found 32.05% Ph-like ALL patients and their median age at presentation was considerably higher than Ph-negative ALL cases (p = .0306). Furthermore, we identified 20% CRLF2 overexpressed cases having 8.33% CRLF2-IGH translocation with concomitant R683S mutation and 8.33% CRLF2-P2RY8 translocation. In 80% of CRLF2 downregulated cases, we identified 10% as having JAK2 rearrangement. Minimal residual disease-positivity was more common in Ph-like ALL cases (55.55% vs. 25% in Ph-negative ALL cases). Immunoglobulin J chain (Jchain), small nuclear ribonucleoprotein SmD1 (SNRPD1), immunoglobulin κ constant (IGKC), NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 2 (NDUFA2), histone H2AX (H2AFX), charged multivesicular body protein 4b (CHMP4B), and carbonyl reductase (NADPH) (CBR1) proteins were identified to be substantially expressed in Ph-like ALL patients, using LC-MS/MS. Gene enrichment analysis indicated that involvement of spliceosomal mediated messenger RNA splicing pathway and four microRNAs was statistically significant in Ph-like ALL patients. CONCLUSIONS For the first time, we have described incidence, molecular, and proteomic characterization of Ph-like ALL, in developing nations. PLAIN LANGUAGE SUMMARY In developing countries, detecting Philadelphia (Ph)-like B-lineage acute lymphoblastic leukemia is complicated and challenging due to its diverse genetic landscape. There is no well-defined and cost-effective methodology for its detection. The incidence of this high-risk subtype is very high in adult cases, and there is an urgent need for its accurate detection. We have developed an online PHi-RACE classifier for its rapid detection, followed by delineating the genomic and proteomic landscape of Ph-like acute lymphoblastic leukemias for the first time in Indian patients.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jogeshwar Binota
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Parveen Bose
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alka Khadwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Ostadali Dehagi M, Rostami S, Shamshiri A, Safari F, Haji Hosseini R, Thorne RF, Ghavamzadeh A. FAT1 Gene Expression in Iranian Acute Lymphoid and Myeloid Leukemia Patients. Int J Hematol Oncol Stem Cell Res 2023; 17:81-88. [PMID: 37637767 PMCID: PMC10452949 DOI: 10.18502/ijhoscr.v17i2.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/31/2022] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND FAT atypical cadherin 1 (FAT1) is a member of the cadherin superfamily whose loss or gain is associated with the initiation and/or progression of different cancers. FAT1 overexpression has been reported in hematological malignancies. This research intended to investigate FAT1 gene expression in adult Iranian acute leukemia patients, compared to normal mobilized peripheral blood CD34+ cells. MATERIALS AND METHODS The peripheral blast (peripheral blood mononuclear cells) cells of 22 acute myeloid leukemia (AML), 14 acute lymphoid leukemia (ALL) patients, and mobilized peripheral blood CD34+ cells of 12 healthy volunteer stem cell donors were collected. Then, quantitative real-time polymerase chain reaction (qPCR) was used to compare FAT1 gene expression. RESULTS Overall, there were no significant differences in FAT1 expression between AML and ALL patients (p>0.2). Nonetheless, the mean expression level of FAT1 was significantly higher in leukemic patients (AML and ALL) than in normal CD34+ cells (p=0.029). Additionally, the FAT1 expression levels were significantly higher in both CD34+ and CD34- leukemic patients than in normal CD34+ cells (p=0.028). CONCLUSION No significant differences were found between FAT1 expression in CD34+ and CD34- leukemic samples (p> 0.3). Thus, higher FAT1 expression was evident in ALL and AML leukemia cells but this appeared unrelated to CD34 expression. This suggests in a proportion of adult acute leukemia, FAT1 expression may prove to be a suitable target for therapeutic strategies.
Collapse
Affiliation(s)
- Mohammadreza Ostadali Dehagi
- Hematology, Oncology and Cell Therapy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Hematology, Oncology and Cell Therapy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Shamshiri
- Research Center for Caries Prevention, Dentistry Research Institute, Department of Community Oral Health, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Safari
- Department of Biology, Payame Noor University, Tehran, Iran
| | | | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China
- School of Environmental & Life Sciences, University of Newcastle, NSW 2258, Australia
| | - Ardeshir Ghavamzadeh
- Cancer & Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wang J, Huang P, Lang C, Luo Y, He Z, Chen Y. The progress in the relationship between trace elements and acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1145563. [PMID: 36968204 PMCID: PMC10033596 DOI: 10.3389/fcell.2023.1145563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Trace elements are very important substances with low content in the human body. If the content of some trace elements changes, they are also related to diseases. Acute lymphoblastic leukemia (ALL) is a malignant blood tumor, and its relationship with trace elements has also been a concern by scholars. Not only have the trace element levels in ALL patients changed, but the efficacy of different treatment methods has also been linked to the corresponding trace element changes. The characteristics of ALL may be related to the dysregulation of differentiation and proliferation of lymphoid precursor cells. Cell proliferation and differentiation are often affected by changes in DNA levels. However, trace elements are involved in DNA damage and repair mechanisms. In recent years, as an increasing number of studies believe that ALL is related to the abnormal metabolism of trace elements in the body, this paper intends to discuss the research progress on the relationship between trace elements and ALL to provide more information on trace elements for the diagnosis, treatment, and prevention of ALL.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changhui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Zhixu He, ; Yan Chen,
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Zhixu He, ; Yan Chen,
| |
Collapse
|
13
|
Wang Y, Li J, Xue TL, Tian S, Yue ZX, Liu SG, Gao C. Clinical, biological, and outcome features of P2RY8-CRLF2 and CRLF2 over-expression in pediatric B-cell precursor acute lymphoblastic leukemia according to the CCLG-ALL 2008 and 2018 protocol. Eur J Haematol 2023; 110:669-679. [PMID: 36814093 DOI: 10.1111/ejh.13948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES CRLF2 alterations are associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This study aimed to explore the clinical, biological, and outcome features of pediatric BCP-ALL with CRLF2 abnormalities. METHODS This study enrolled 630 childhood BCP-ALLs treated on CCLG-ALL 2008 or 2018 protocol. P2RY8-CRLF2 was determined by Sanger sequencing and CRLF2 expression was evaluated by qRT-PCR. The correlation between clinical, biological features and outcomes with P2RY8-CRLF2 or CRLF2 over-expression were analyzed. RESULTS P2RY8-CRLF2 and CRLF2 over-expression were found in 3.33% and 5.71% respectively. P2RY8-CRLF2 was associated with male, higher frequency of CD7 expression, high WBC and MRD before consolidation. CRLF2 over-expression showed ETV6-RUNX1- , higher frequency of CD22, CD34, CD66c, CD86 expression, hyperdiploidy and high MRD at early treatment. The lower overall survival (OS) was found in patients with P2RY8-CRLF2 and confined only in IR group. Furthermore, adverse event-free survival and OS of P2RY8-CRLF2 were discovered comparing to those without known fusions or treated on CCLG-ALL 2008 protocol. However, P2RY8-CRLF2 was not confirmed as independent prognostic factors and no prognostic impact of CRLF2 over-expression was found. CONCLUSIONS These findings indicate P2RY8-CRLF2 identifies a subset of patients with specific features and adverse outcomes that could be improved by risk-directed treatment.
Collapse
Affiliation(s)
- Ying Wang
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| | - Jun Li
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| | - Tian-Lin Xue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuo Tian
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| | - Zhi-Xia Yue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| | - Shu-Guang Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
14
|
Abd El Monem M, El Ashry R, Bassiouny MR, Aref S, Abd El Mabood S. The prognostic significance of cytokine receptor-like factor 2 expression and <i>JAK2</i> mutation in pediatric B-cell acute lymphoblastic leukemia: A prospective cohort study. PEDIATRIC HEMATOLOGY/ONCOLOGY AND IMMUNOPATHOLOGY 2023; 22:40-45. [DOI: 10.24287/1726-1708-2023-22-1-40-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Philadelphia (Ph)-like B-cell acute lymphoblastic leukemia (B-ALL) is defined by a gene expression profile similar to Phpositive B-ALL and shows a large number of genetic alterations in the cytokine receptor and kinasesignaling pathway genes that contribute to its aggressive phenotype and frequent disease recurrence – the main cause of death in affected children. Here, we aimed to correlate CRLF2 expression and JAK2 mutations in B-ALL patients with other prognostic factors and the patients’ outcomes as well as to evaluate their prognostic significance. The study was approved by the local institutional review board and written consents were obtained from a parent of each child before their enrolment. We included 54 newly diagnosed B-ALL pediatric patients (median age: 9.0 (2.0–18.0)) who were stratified either into a standard-risk (SR) or high-risk (HR) group and treated according to the modified BerlinFrankfurt-Münster 90 protocol (ALL-BFM 90). Fresh bone marrow samples were used to determine CRLF2 expression as well as to search for the JAK2 V617F mutation. Normal CRLF2 expression was reported in the SR patients much more often than in the HR group, while its overexpression was more common in the HR patients than in the SR ones (22 vs 6 and 18 vs 8, respectively, p < 0.001). CRLF2 was also more often overexpressed in the MRD-positive cases than in the negative ones (17 vs 9, p < 0.001), while normal CRLF2 expression was more common in the MRD-negative patients compared to the MRD-positive ones (24 vs 4, p < 0.001) which supports the unfavorable prognostic value of CRLF2 in relation to MRD positivity at the end of the induction treatment. JAK2 mutation was detected only in 2 patients belonging to the CRLF2 overexpression group which made the assessment of the prognostic significance of this mutation impossible. Notably, none of the patients with normal CRLF2 expression ended up relapsing while 4 patients with overexpressed CRLF2 developed a relapse (p = 0.031). The study subjects were followed up for up to 24 months, and we did not find CRLF2 overexpression to negatively influence overall survival, however, it did have an adverse effect on relapse-free survival. In summary, CRLF2 overexpression was found to be an unfavorable prognostic factor in childhood ALL as it was expressed more in high-risk patients and in those with poor treatment response. The analysis of CRLF2 expression in B-ALL pediatric patients may help in risk stratification and can potentially offer new treatment options based on novel CRLF2 inhibitors.
Collapse
|
15
|
Zhang J, Xu XJ, Liu L, Song H, Shen H, Xu W, Zhao F, Liang J, Liao C, Wang Y, Xia T, Cao S, Tang Y, Qin J, Shen D. Clinical and Genetic Characteristics of IKZF1 Mutation in Chinese Children With B-Cell Acute Lymphoblastic Leukemia. Front Genet 2022; 13:822832. [PMID: 35419036 PMCID: PMC9000999 DOI: 10.3389/fgene.2022.822832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy associated with altered lymphoid precursor hyperplasia and accompanied with different genetic mutations. Few studies have been reported on the association between gene mutations and clinical features of IKZF1 mutation in children with B-cell ALL (B-ALL). We investigated clinical and genetic characteristics in 200 newly diagnosed pediatric B-ALL through multiplex ligation-dependent probe amplification (MLPA) and targeted next-generation sequencing (NGS) method. We found that IKZF1 mutations, including large segment deletions, small insertions or deletions (InDels) and single nucleotide variations (SNVs), were detected in 22 patients with a positive mutation rate of 11.0%. IKZF1 mutation was significantly associated with higher WBC count (19.38 × 109/L vs. 5.80 × 109/L, p = 0.002). Compared with IKZF1 wild-type cases, a higher frequency of IL7R gene mutation was discovered in IKZF1 mutant cases (9.1% vs. 0.0%, p = 0.012). Patients with IKZF1 mutation were less sensitive to glucocorticoid induction than patients without IKZF1 mutation (63.6% vs. 9.0%, p < 0.001). On the 15th day of induction, minimal residual disease (MRD) > 10−3 level were higher in IKZF1 mutant patients than wild-type patients (45.5% vs. 22.3%, p = 0.018). In conclusion, our study reveals the association between genetic mutations and clinical features in Chinese children with B-ALL, which might contribute to molecular classification, risk stratification and prognosis evaluation, and provide new ideas for targeted therapy in ALL.
Collapse
Affiliation(s)
- Jingying Zhang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Jun Xu
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixia Liu
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Hua Song
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Heping Shen
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiqun Xu
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Fenying Zhao
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Juan Liang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Chan Liao
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Tian Xia
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Yongmin Tang
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Diying Shen
- Division/Center of Pediatric Hematology-Oncology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.,The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
16
|
Huang Z, Jia Y, Ruan G, Zuo Y, Wu J, Lu A, Xue Y, Cheng Y, Zhang L. Quantitative analysis of IKZF1 gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia: higher levels are associated with a poorer prognosis. Pediatr Hematol Oncol 2022; 39:243-253. [PMID: 34582325 DOI: 10.1080/08880018.2021.1966558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To assess the prognostic effect of different levels of IKZF1 gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). IKZF1 Δ2-8/ALB deletions were quantified using multiplex real-time quantitative PCR in newly diagnosed pediatric BCP-ALL patients. Seventy-four patients with IKZF1 deletions ≥ 0.01% were included. Clinical characteristics, laboratory data, and treatment outcomes were analyzed. The patients were divided into two groups: IKZF1 deletions <1% (group A) and ≥1% (group B). Group B patients had a higher BCR-ABL1 positive rate than group A patients. The proportions of patients who had an age at onset ≥10 years old, and white blood cell count ≥50 × 109/L were significantly higher in group B than in group A. The 3-year overall survival (OS) and 3-year event-free survival (EFS) rates in group B were 79 ± 8.8% and 62.4 ± 9.7%, respectively, being significantly lower than those in group A (97.7 ± 2.2% and 83.2 ± 5.8%, respectively). The level of IKZF1 deletions ≥1% and the central nervous system leukemia were independent risk factors of EFS. Pediatric BCP-ALL patients with high levels of IKZF1 gene deletions have a poorer prognosis than those with low levels.
Collapse
Affiliation(s)
- Zhizhuo Huang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Guorui Ruan
- National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yingxi Zuo
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Jun Wu
- Department of Pediatrics, Peking University Shougang Hospital, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yujuan Xue
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yifei Cheng
- Department of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
17
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
18
|
Clinical impacts of copy number variations in B-cell differentiation and cell cycle control genes in pediatric B-cell acute lymphoblastic leukemia: a single centre experience. Radiol Oncol 2021; 56:92-101. [PMID: 34957727 PMCID: PMC8884847 DOI: 10.2478/raon-2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background IKZF1 gene deletions have been identified as a poor prognostic factor in pediatric B-cell acute lymphoblastic leukemia (B-ALL), especially in the presence of co-occurring deletions (IKZF1plus profile). This study aimed to determine the frequency of IKZF1 deletions and deletions in other B-cell differentiation and cell cycle control genes, and their prognostic impact in Slovenian pediatric B-ALL patients. Patients and methods We studied a cohort of 99 patients diagnosed with B-ALL from January 2012 to December 2020 and treated according to the ALL IC-BFM 2009 protocol. Eighty-eight bone marrow or peripheral blood samples were analysed for copy number variations (CNVs) using the SALSA MLPA P335 ALL-IKZF1 probemix. Results At least one CNV was detected in more than 65% of analysed samples. The most frequently altered genes were PAX5 and CDKN2A/B (30.7%, 26.1%, and 25.0%, respectively). Deletions in IKZF1 were present in 18.2% of analysed samples and were associated with an inferior 5-year event-free survival (EFS; 54.8% vs. 85.9%, p = 0.016). The IKZF1plus profile was identified in 12.5% of the analysed samples, and these patients had an inferior 5-year EFS than those with deletions in IKZF1 only and those without deletions (50.8% vs. 75.0% vs. 85.9%, respectively, p = 0.049). Overall survival (OS) was also worse in patients with the IKZF1plus profile than those with deletions in IKZF1 only and those without deletions (5-year OS 76.2% vs. 100% vs. 93.0%, respectively). However, the difference between the groups was not statistically significant. Conclusions Our results are in concordance with the results obtained in larger cooperative clinical trials. Copy number variations analysis using the SALSA MLPA kit is a reliable tool for initial diagnostic approach in children with B-ALL, even in smaller institutions in low- and middle-income countries.
Collapse
|
19
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
20
|
IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 2020; 135:252-260. [PMID: 31821407 DOI: 10.1182/blood.2019000813] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
Improved personalized adjustment of primary therapy to the perceived risk of relapse by using new prognostic markers for treatment stratification may be beneficial to patients with acute lymphoblastic leukemia (ALL). Here, we review the advances that have shed light on the role of IKZF1 aberration as prognostic factor in pediatric ALL and summarize emerging concepts in this field. Continued research on the interplay of disease biology with exposure and response to treatment will be key to further improve treatment strategies.
Collapse
|
21
|
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020; 44:100677. [PMID: 32245541 DOI: 10.1016/j.blre.2020.100677] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Advances in genomics have deepened our understanding of the biology of acute lymphoblastic leukemia (ALL), defined novel molecular leukemia subtypes, discovered new prognostic biomarkers and paved the way to emerging molecularly targeted therapeutic avenues. Since its discovery, IKZF1 has generated significant interest within the leukemia scientific community.IKZF1 plays a critical role in lymphoid development and its alterations cooperate to mediate leukemogenesis. IKZF1 alterations are present in approximately 15% of childhood ALL, rise in prevalence among adults with ALL and become highly enriched within kinase-driven ALL. A cumulating body of literature has highlighted the adverse prognostic impact of IKZF1 alterations in both Philadelphia chromosome (Ph)-negative and Ph-driven ALL. IKZF1 alterations thus emerge as an important prognostic biomarker in ALL. This article aims to provide a state-of-the-art review focusing on the prognostic clinical relevance of IKZF1 alterations in ALL, as well as current and future therapeutic strategies targeting IKZF1-altered ALL.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Hasegawa D, Imamura T, Yumura-Yagi K, Takahashi Y, Usami I, Suenobu SI, Nishimura S, Suzuki N, Hashii Y, Deguchi T, Moriya-Saito A, Kato K, Kosaka Y, Hirayama M, Iguchi A, Kawasaki H, Hori H, Sato A, Kudoh T, Nakahata T, Oda M, Hara J, Horibe K. Risk-adjusted therapy for pediatric non-T cell ALL improves outcomes for standard risk patients: results of JACLS ALL-02. Blood Cancer J 2020; 10:23. [PMID: 32107374 PMCID: PMC7046744 DOI: 10.1038/s41408-020-0287-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 11/14/2022] Open
Abstract
This study was a second multicenter trial on childhood ALL by the Japan Childhood Leukemia Study Group (JACLS) to improve outcomes in non-T ALL. Between April 2002 and March 2008, 1138 children with non-T ALL were enrolled in the JACLS ALL-02 trial. Patients were stratified into three groups using age, white blood cell count, unfavorable genetic abnormalities, and treatment response: standard risk (SR), high risk (HR), and extremely high risk (ER). Prophylactic cranial radiation therapy (PCRT) was abolished except for CNS leukemia. Four-year event-free survival (4yr-EFS) and 4-year overall survival (4yr-OS) rates for all patients were 85.4% ± 1.1% and 91.2% ± 0.9%, respectively. Risk-adjusted therapy resulted in 4yr-EFS rates of 90.4% ± 1.4% for SR, 84.9% ± 1.6% for HR, and 66.5% ± 4.0% for ER. Based on NCI risk classification, 4yr-EFS rates were 88.2% in NCI-SR and 76.4% in NCI-HR patients, respectively. Compared to previous trial ALL-97, 4yr-EFS of NCI-SR patients was significantly improved (88.2% vs 81.2%, log rank p = 0.0004). The 4-year cumulative incidence of isolated (0.9%) and total (1.5%) CNS relapse were significantly lower than those reported previously. In conclusion, improved EFS in NCI-SR patients and abolish of PCRT was achieved in ALL-02.
Collapse
Affiliation(s)
- Daiichiro Hasegawa
- Department of Hematology/Oncology, Hyogo Prefectural Children's Hospital, Kobe, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan. .,Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan.
| | | | - Yoshihiro Takahashi
- Department of Pediatrics, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Ikuya Usami
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan.,Department of Pediatric Hematology and Oncology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - So-Ichi Suenobu
- Division of General Pediatrics and Emergency Medicine, Department of Pediatrics, Oita University, Oita, Japan
| | | | - Nobuhiro Suzuki
- Department of Pediatrics, Hokkaido Medical Center for Child Health and Rehabilitation, Sapporo, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University, Suita, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University, Tsu, Japan
| | - Akiko Moriya-Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koji Kato
- Department of Hematology Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology/Oncology, Hyogo Prefectural Children's Hospital, Kobe, Japan
| | | | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | | | - Hiroki Hori
- Department of Pediatrics, Mie University, Tsu, Japan
| | - Atsushi Sato
- Department of Hematology/Oncology, Miyagi Children's Hospital, Sendai, Japan
| | | | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Oda
- Department of Pediatrics, Okayama University, Okayama, Japan
| | - Junichi Hara
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | |
Collapse
|
23
|
Upfront Treatment Influences the Composition of Genetic Alterations in Relapsed Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2020; 4:e318. [PMID: 32072138 PMCID: PMC7000475 DOI: 10.1097/hs9.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text Genomic alterations in relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) may provide insight into the role of specific genomic events in relapse development. Along this line, comparisons between the spectrum of alterations in relapses that arise in different upfront treatment protocols may provide valuable information on the association between the tumor genome, protocol components and outcome. Here, we performed a comprehensive characterization of relapsed BCP-ALL cases that developed in the context of 3 completed Dutch upfront studies, ALL8, ALL9, and ALL10. In total, 123 pediatric BCP-ALL relapses and 77 paired samples from primary diagnosis were analyzed for alterations in 22 recurrently affected genes. We found pronounced differences in relapse alterations between the 3 studies. Specifically, CREBBP mutations were observed predominantly in relapses after treatment with ALL8 and ALL10 which, in the latter group, were all detected in medium risk-treated patients. IKZF1 alterations were enriched 2.2-fold (p = 0.01) and 2.9-fold (p < 0.001) in ALL8 and ALL9 relapses compared to diagnosis, respectively, whereas no significant enrichment was found for relapses that were observed after treatment with ALL10. Furthermore, IKZF1 deletions were more frequently preserved from a major clone at diagnosis in relapses after ALL9 compared to relapses after ALL8 and ALL10 (p = 0.03). These data are in line with previous studies showing that the prognostic value of IKZF1 deletions differs between upfront protocols and is particularly strong in the ALL9 regimen. In conclusion, our data reveal a correlation between upfront treatment and the genetic composition of relapsed BCP-ALL.
Collapse
|
24
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
25
|
Chen C, Heng EYH, Lim AST, Lau LC, Lim TH, Wong GC, Tien SL. Chromosomal microarray analysis is superior in identifying cryptic aberrations in patients with acute lymphoblastic leukemia at diagnosis/relapse as a single assay. Int J Lab Hematol 2019; 41:561-571. [PMID: 31112375 DOI: 10.1111/ijlh.13052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Conventional cytogenetics (CC) is important in diagnosis, therapy, monitoring of post-transplant bone marrow, and prognosis assessment of acute lymphoblastic leukemia (ALL). However, due to the nature of ALL, CC often encounters difficulties of complex karyotype, poor chromosome morphology, low mitotic index, or normal cells dividing only. In contrast, chromosomal microarray analysis (CMA) showed a specificity >99% and a sensitivity of 100% in chronic lymphocytic leukemia (CLL) patients. Here, we report our experience with CMA on adult ALL patients. METHODS Thirty-three bone marrow/blood samples from ALL patients (aged 18-79 years, median 44) at diagnosis/relapse, analyzed by CC and/or fluorescence in situ hybridization (FISH), were recruited. Chromosomal microarray analysis results were compared with CC. Fluorescence in situ hybridization analysis, if available, was applied when there was a discrepancy. RESULTS Copy-neutral loss-of-heterozygosity (CN-LOH) was found in 8 cases (24.2%). Only CN-LOH at 9p was recurrent (3 cases, 9.1%). Copy number alterations (CNAs) were detected in 6 of 9 cases (66.7%) with normal karyotypes, in 3 of 5 cases (60.0%) with sole "balanced" translocations, and in 18 of 19 cases (94.7%) with complex karyotypes. Common CNAs involved CDKN2A/2B (30.3%), IKZF1 (27.3%), PAX5 (9.1%), RB1 (9.1%), BTG1 (6.7%), and ETV6 (6.7%), which regulate cell cycle, B lymphopoiesis, or act as tumor suppressors in ALL. Copy number alteration detection rate by CMA was 81.8% (27 of 33 cases) as compared to 57.6% (19 of 33 cases) by CC. CONCLUSION Incorporation of CMA as a routine clinical test at the time of diagnosis/relapse, in conjunction with CC and/or FISH, is highly recommended.
Collapse
Affiliation(s)
- Chuanfei Chen
- Cytogenetics Laboratory, Department of Molecular Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Evelyn Yee Hsieh Heng
- Cytogenetics Laboratory, Department of Molecular Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Alvin Soon Tiong Lim
- Cytogenetics Laboratory, Department of Molecular Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Lai Ching Lau
- Cytogenetics Laboratory, Department of Molecular Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tse Hui Lim
- Cytogenetics Laboratory, Department of Molecular Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Gee Chuan Wong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Sim Leng Tien
- Cytogenetics Laboratory, Department of Molecular Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Haematology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
26
|
Ayón-Pérez MF, Pimentel-Gutiérrez HJ, Durán-Avelar MDJ, Vibanco-Pérez N, Pérez-Peraza VM, Pérez-González ÓA, Barrientos-Ríos R, Santillán-Ávila CF, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Gutiérrez-Franco J, Vázquez-Reyes A. IKZF1 Gene Deletion in Pediatric Patients Diagnosed with Acute Lymphoblastic Leukemia in Mexico. Cytogenet Genome Res 2019; 158:10-16. [DOI: 10.1159/000499641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
The IKZF1 gene is formed by 8 exons and encodes IKAROS, a transcription factor that regulates the expression of genes that control cell cycle progression and cell survival. In general, 15-20% of the patients with preB acute lymphoblastic leukemia (preB ALL) harbor IKZF1 deletions, and the frequency of these deletions increases in BCR-ABL1 or Ph-like subgroups. These deletions have been associated with poor treatment response and the risk of relapse. The aim of this descriptive study was to determine the frequency of IKZF1 deletions and the success of an induction therapy response in Mexican pediatric patients diagnosed with preB ALL in 2 hospitals from 2017 to August 2018. Thirty-six bone marrow samples from patients at the Instituto Nacional de Pediatría in Mexico City and the Centro Estatal de Cancerología in Tepic were analyzed. The IKZF1 deletion was identified by MLPA using the SALSA MLPA P335 ALL-IKZF1 probemix. Deletions of at least 1 IKZF1 exon were observed in 7/34 samples (20.6%): 3 with 1 exon deleted; 1 with 2 exons, 1 with 5 exons, 1 with 6 exons, and 1 patient with a complete IKZF1 deletion. This study was descriptive in nature; we calculated the frequency of the IKZF1 gene deletion in a Mexican pediatric population with preB ALL as 20.6%.
Collapse
|
27
|
Discontinuation of l-asparaginase and poor response to prednisolone are associated with poor outcome of ETV6-RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia. Int J Hematol 2019; 109:477-482. [DOI: 10.1007/s12185-019-02599-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
28
|
Starý J, Zuna J, Zaliova M. New biological and genetic classification and therapeutically relevant categories in childhood B-cell precursor acute lymphoblastic leukemia. F1000Res 2018; 7. [PMID: 30345005 PMCID: PMC6173109 DOI: 10.12688/f1000research.16074.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Traditionally, genetic abnormalities detected by conventional karyotyping, fluorescence in situ hybridization, and polymerase chain reaction divided childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into well-established genetic subtypes. This genetic classification has been prognostically relevant and thus used for the risk stratification of therapy. Recently, the introduction of genome-wide approaches, including massive parallel sequencing methods (whole-genome, -exome, and -transcriptome sequencing), enabled extensive genomic studies which, together with gene expression profiling, largely expanded our understanding of leukemia pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been described. Exact identification of recurrent genetic alterations and their combinations facilitates more precise risk stratification of patients. Discovery of targetable lesions in subsets of patients enables the introduction of new treatment modalities into clinical practice and stimulates the transfer of modern methods from research laboratories to routine practice.
Collapse
Affiliation(s)
- Jan Starý
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| |
Collapse
|
29
|
Tang S, Shen H, Qu C, Dai H, Zhu X, Xue S, Ding Z, Lu J, Wu D, Tang X. Ikaros family zinc-finger 1 mutation is an independent factor for the poor prognosis of adult B-cell acute lymphoblastic leukemia, and allogeneic hematopoietic stem cell transplantation can improve clinical outcomes. Bone Marrow Transplant 2018; 54:236-243. [PMID: 29942002 DOI: 10.1038/s41409-018-0249-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 01/11/2023]
Abstract
To investigate the prognosis of patients with adult B-cell acute lymphoblastic leukemia (B-ALL) with Ikaros family zinc-finger 1 (IKZF1) mutation and determine the role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in improving the clinical outcome, we detected the IKZF1 mutation and BCR-ABL fusion gene at diagnosis in the bone marrow of 164 adult patients with B-ALL, and analyzed the clinical data of these patients retrospectively. Our analysis showed that grade III-IV acute graft-versus-host disease and IKZF1 mutation in the transplantation group and age and IKZF1 mutation in the non-transplantation group were independent factors for poor prognosis by univariate and multivariate analyses.The 3-year overall survival (OS) and leukemia-free survival (LFS) rates were much lower in the IKZF1+/BCR-ABL+ subgroup than in the IKZF1+/BCR-ABL- and IKZF1-/BCR-ABL- subgroups in both the transplantation and non-transplantation groups. The 3-year OS and LFS rates were significantly higher in the transplantation group than in the non-transplantation group with IKZF1 mutation.The study demonstrated that IKZF1 mutation was an independent factor indicating the poor prognosis of adult B-ALL and much worse prognosis in the BCR-ABL+ subgroup in both non-transplantation and transplantation groups. However, allo-HSCT significantly improved the OS and LFS of patients and also their clinical outcomes.
Collapse
Affiliation(s)
- Shanhao Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Department of Hematology, Yinzhou People Hospital, Ningbo, China
| | - Hongjie Shen
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Changju Qu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiping Dai
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaming Zhu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shengli Xue
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zixuan Ding
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jing Lu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China. .,Institute of Blood and Marrow Transplantation, Suzhou, China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China. .,Institute of Blood and Marrow Transplantation, Suzhou, China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
30
|
Chiaretti S, Messina M, Grammatico S, Piciocchi A, Fedullo AL, Di Giacomo F, Peragine N, Gianfelici V, Lauretti A, Bareja R, Martelli MP, Vignetti M, Apicella V, Vitale A, Li LS, Salek C, Elemento O, Inghirami G, Weinstock DM, Guarini A, Foà R. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol 2018; 181:642-652. [PMID: 29675955 PMCID: PMC5975184 DOI: 10.1111/bjh.15251] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/01/2018] [Indexed: 01/07/2023]
Abstract
BCR/ABL1-like acute lymphoblastic leukaemia (ALL) is a subgroup of B-lineage acute lymphoblastic leukaemia that occurs within cases without recurrent molecular rearrangements. Gene expression profiling (GEP) can identify these cases but it is expensive and not widely available. Using GEP, we identified 10 genes specifically overexpressed by BCR/ABL1-like ALL cases and used their expression values - assessed by quantitative real time-polymerase chain reaction (Q-RT-PCR) in 26 BCR/ABL1-like and 26 non-BCR/ABL1-like cases to build a statistical "BCR/ABL1-like predictor", for the identification of BCR/ABL1-like cases. By screening 142 B-lineage ALL patients with the "BCR/ABL1-like predictor", we identified 28/142 BCR/ABL1-like patients (19·7%). Overall, BCR/ABL1-like cases were enriched in JAK/STAT mutations (P < 0·001), IKZF1 deletions (P < 0·001) and rearrangements involving cytokine receptors and tyrosine kinases (P = 0·001), thus corroborating the validity of the prediction. Clinically, the BCR/ABL1-like cases identified by the BCR/ABL1-like predictor achieved a lower rate of complete remission (P = 0·014) and a worse event-free survival (P = 0·0009) compared to non-BCR/ABL1-like ALL. Consistently, primary cells from BCR/ABL1-like cases responded in vitro to ponatinib. We propose a simple tool based on Q-RT-PCR and a statistical model that is capable of easily, quickly and reliably identifying BCR/ABL1-like ALL cases at diagnosis.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Monica Messina
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Sara Grammatico
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | | | - Anna Lucia Fedullo
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Filomena Di Giacomo
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nadia Peragine
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Valentina Gianfelici
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Alessia Lauretti
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Rohan Bareja
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Maria Paola Martelli
- Institute of Haematology, Centro Ricerche Onco-Ematologiche (CREO), University of Perugia, Perugia, Italy
| | - Marco Vignetti
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Valerio Apicella
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Antonella Vitale
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Loretta S. Li
- Department of Paediatric Haematology/Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cyril Salek
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna Guarini
- Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Robin Foà
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| |
Collapse
|
31
|
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes. Int J Hematol 2018; 108:312-318. [DOI: 10.1007/s12185-018-2474-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
|
32
|
Takahashi K, Inukai T, Imamura T, Yano M, Tomoyasu C, Lucas DM, Nemoto A, Sato H, Huang M, Abe M, Kagami K, Shinohara T, Watanabe A, Somazu S, Oshiro H, Akahane K, Goi K, Kikuchi J, Furukawa Y, Goto H, Minegishi M, Iwamoto S, Sugita K. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines. PLoS One 2017; 12:e0188680. [PMID: 29236701 PMCID: PMC5728482 DOI: 10.1371/journal.pone.0188680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 11/11/2017] [Indexed: 11/19/2022] Open
Abstract
Prognosis of childhood acute lymphoblastic leukemia (ALL) has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ), a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+) ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin) in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ), a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19) ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19) ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19) ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good sensitivity to CFZ and BTZ, and that CFZ combination chemotherapy may be a new therapeutic option with higher anti-leukemic activity for refractory ALL that contain P-glycoprotein-negative leukemia cells.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
- * E-mail:
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mio Yano
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chihiro Tomoyasu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - David M. Lucas
- College of Pharmacy, The Ohio State University, Columbus, OH, United States of America
| | - Atsushi Nemoto
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroki Sato
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Meixian Huang
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinpei Somazu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Oshiro
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jiro Kikuchi
- Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Yusuke Furukawa
- Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Hiroaki Goto
- Hematology/Oncology & Regenerative Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
| | | | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
33
|
Rahmani M, Talebi M, Hagh MF, Feizi AAH, Solali S. Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother 2017; 97:1493-1500. [PMID: 29793312 DOI: 10.1016/j.biopha.2017.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is a dynamic process influencing gene expression by altering either coding or non-coding loci. Despite advances in treatment of Acute Lymphoblastic Leukemia (ALL); relapse occurs in approximately 20% of patients. Nowadays, epigenetic factors are considered as one of the most effective mechanisms in pathogenesis of malignancies. These factors are reversible elements which can be potentially regarded as therapy targets and disease prognosis. DNA methylation, which primarily serves as transcriptional suppressor, mostly occurs in CpG islands of the gene promoter regions. This was shown as a key epigenetic factor in inactivating various tumor suppressor genes during cancer initiation and progression. We aimed to review methylation status of key genes involved in hematopoietic malignancies such as IKZF1, CDKN2B, TET2, CYP1B1, SALL4, DLC1, DLX family, TP73, PTPN6, and CDKN1C; and their significance in pathogenesis of ALL. The DNA methylation alterations in promoter regions of the genes have been shown to play crucial roles in tumorigenesis. Methylation -based inactivation of these genes has also been reported as associated with prognosis in acute leukemia. In this review, we also addressed the association of gene expression and methylation pattern in ALL patients.
Collapse
Affiliation(s)
- Mina Rahmani
- Department of Immunology, Division of Hematology and Transfusion Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Department of Immunology, Division of Hematology and Transfusion Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Yano M, Imamura T, Asai D, Deguchi T, Hashii Y, Endo M, Sato A, Kawasaki H, Kosaka Y, Kato K, Hori H, Yumura-Yagi K, Hara J, Oda M, Horibe K. Clinical significance of SH2B3 (LNK) expression in paediatric B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2017; 183:327-330. [PMID: 29082511 DOI: 10.1111/bjh.14981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mio Yano
- Department of Paediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Paediatrics, Kyoto City Hospital, Kyoto, Japan.,Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Toshihiko Imamura
- Department of Paediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Daisuke Asai
- Department of Paediatrics, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Takao Deguchi
- Department of Paediatrics, Mie University, Tsu, Japan
| | - Yoshiko Hashii
- Department of Paediatrics, Osaka University, Osaka, Japan
| | - Mikiya Endo
- Department of Paediatrics, Iwate Medical University, Iwate, Japan
| | - Atsushi Sato
- Department of Haematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Hirohide Kawasaki
- Department of Paediatrics, Kansai Medical University, Hirakata, Japan
| | - Yoshiyuki Kosaka
- Department of Haematology and Oncology, Hyogo Prefectural Children's Hospital, Kobe, Japan
| | - Koji Kato
- Department of Haematology Oncology, Children's Medical Centre, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Hiroki Hori
- Department of Paediatrics, Mie University, Tsu, Japan
| | | | - Junichi Hara
- Department of Paediatric Haematology/Oncology, Osaka City General Hospital, Osaka, Japan
| | - Megumi Oda
- Department of Paediatrics, Okayama University, Okayama, Japan
| | - Keizo Horibe
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| |
Collapse
|
35
|
The role of G protein-coupled receptors in lymphoid malignancies. Cell Signal 2017; 39:95-107. [PMID: 28802842 DOI: 10.1016/j.cellsig.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Abstract
B cell lymphoma consists of multiple individual diseases arising throughout the lifespan of B cell development. From pro-B cells in the bone marrow, through circulating mature memory B cells, each stage of B cell development is prone to oncogenic mutation and transformation, which can lead to a corresponding lymphoma. Therapies designed against individual types of lymphoma often target features that differ between malignant cells and the corresponding normal cells from which they arise. These genetic changes between tumor and normal cells can include oncogene activation, tumor suppressor gene repression and modified cell surface receptor expression. G protein-coupled receptors (GPCRs) are an important class of cell surface receptors that represent an ideal target for lymphoma therapeutics. GPCRs bind a wide range of ligands to relay extracellular signals through G protein-mediated signaling cascades. Each lymphoma subgroup expresses a unique pattern of GPCRs and efforts are underway to fully characterize these patterns at the genetic level. Aberrations such as overexpression, deletion and mutation of GPCRs have been characterized as having causative roles in lymphoma and such studies describing GPCRs in B cell lymphomas are summarized here.
Collapse
|
36
|
Bhandari P, Ahmad F, Das BR. Molecular profiling of gene copy number abnormalities in key regulatory genes in high-risk B-lineage acute lymphoblastic leukemia: frequency and their association with clinicopathological findings in Indian patients. Med Oncol 2017; 34:92. [PMID: 28401483 DOI: 10.1007/s12032-017-0940-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Genes related to key cellular pathways are frequently altered in B cell ALL and are associated with poor survival especially in high-risk (HR) subgroups. We examined gene copy number abnormalities (CNA) in 101 Indian HR B cell ALL patients and their correlation with clinicopathological features by multiplex ligation-dependent probe amplification. Overall, CNA were detected in 59 (59%) cases, with 26, 10 and 23% of cases harboring 1, 2 or +3 CNA. CNA were more prevalent in BCR-ABL1 (60%), pediatric (64%) and high WCC (WBC count) (63%) patients. Frequent genes deletions included CDNK2A/B (26%), IKZF1 (25%), PAX5 (14%), JAK2 (7%), BTG1 (6%), RB1 (5%), EBF1 (4%), ETV6 (4%), while PAR1 region genes were predominantly duplicated (20%). EBF1 deletions selectively associated with adults, IKZF1 deletions occurred frequently in high WCC and BCR-ABL1 cases, while PAR1 region gains significantly associated with MLL-AF4 cases. IKZF1 haploinsufficiency group was predominant, especially in adults (65%), high WCC (60%) patients and BCR-ABL1-negative (78%) patients. Most cases harbored multiple concurrent CNA, with IKZF1 concomitantly occurring with CDNK2A/B, PAX5 and BTG1, while JAK2 occurred with CDNK2A/B and PAX5. Mutually exclusive CNA included ETV6 and IKZF1/RB1, and EBF1 and JAK2. Our results corroborate with global reports, aggregating molecular markers in Indian HR B-ALL cases. Integration of CNA data from rapid methods like MLPA, onto background of existing gold-standard methods detecting significant chromosomal abnormalities, provides a comprehensive genetic profile in B-ALL.
Collapse
Affiliation(s)
- Prerana Bhandari
- Research and Development Division, Molecular Pathology, Clinical Research Services, SRL Limited, Plot No.1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India
| | - Firoz Ahmad
- Research and Development Division, Molecular Pathology, Clinical Research Services, SRL Limited, Plot No.1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India
| | - Bibhu Ranjan Das
- Research and Development Division, Molecular Pathology, Clinical Research Services, SRL Limited, Plot No.1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, 400062, India.
| |
Collapse
|
37
|
Churchman ML, Mullighan CG. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp Hematol 2017; 46:1-8. [PMID: 27865806 PMCID: PMC5241204 DOI: 10.1016/j.exphem.2016.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
Genetic alterations of IKZF1 encoding the lymphoid transcription factor IKAROS are a hallmark of high-risk B-progenitor acute lymphoblastic leukemia (ALL), such as BCR-ABL1-positive (Ph+) and Ph-like ALL, and are associated with poor outcome even in the era of contemporary chemotherapy incorporating tyrosine kinase inhibitors. Recent experimental mouse modeling of B-progenitor ALL has shown that IKZF1 alterations have multiple effects, including arresting differentiation, skewing lineage of leukemia from myeloid to lymphoid, and, in Ph+ leukemia, conferring resistance to tyrosine kinase inhibitor (TKI) therapy without abrogating ABL1 inhibition. These effects are in part mediated by acquisition of an aberrant hematopoietic stem cell-like program accompanied by induction of cell surface expression of stem cell and adhesion molecules that mediate extravascular invasion and residence in the niche and activation of integrin signaling pathways. These effects can be exploited therapeutically using several approaches. IKZF1 alterations also result in upregulation of RXRA that encodes part of the heterodimeric retinoic acid X receptor. Rexinoids, a synthetic class of retinoids that bind specifically to retinoid "X" receptors such as bexarotene potently reverse aberrant adhesion and niche mislocalization in vivo and induce differentiation and cell cycle arrest. Focal adhesion kinase inhibitors block the downstream integrin-mediated signaling, reverse adhesion, and niche mislocalization. Both agents act synergistically with TKIs to prolong survival of Ph+ ALL in mouse and human xenograft model, with long-term remission induced by focal adhesion kinase inhibitors. Therefore, these findings provide important new conceptual insights into the mechanisms by which IKZF1 alterations result in drug resistance and indicate that therapeutic strategies directed against the pathways deregulated by mutation, rather than attempting to restore IKZF1 expression directly, represent promising therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Michelle L Churchman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
38
|
Kobayashi K, Nakagami-Yamaguchi E, Hayakawa A, Adachi S, Hara J, Tokimasa S, Ohta H, Hashii Y, Rikiishi T, Sawada M, Kuriyama K, Kohdera U, Kamibeppu K, Kawasaki H, Oda M, Hori H. Health-related quality of life in Japanese children with acute lymphoblastic leukemia during and after chemotherapy. Pediatr Int 2017; 59:145-153. [PMID: 27422759 DOI: 10.1111/ped.13092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Quality of life (QOL) as a treatment outcome has not yet been evaluated among patients receiving a specific treatment regimen by treatment phase in a consistent manner. This exploratory cross-sectional study evaluated the QOL of children with acute lymphoblastic leukemia (ALL) receiving one of the most popular treatment regimens in Japan (Japan Association of Childhood Leukemia Study ALL-02 revised protocol). METHODS Children aged 5-18 years with newly diagnosed B-cell precursor ALL were included. The Pediatric Quality of Life Inventory™ 4.0 Generic Core Scales (PedsQL-J) were completed by children with ALL and their siblings, as well as by age- and sex-matched healthy controls. PedsQL Cancer Module (PedsQL-C) scores were also collected from children with ALL. RESULTS QOL in children with ALL of the consolidation phase group was significantly decreased compared with that of healthy controls, except in the area of emotional functioning. Regarding the maintenance phase group, QOL impairment was noted in the physical and school functioning, but no differences were noted in social functioning. The off-treatment group had a large effect size only for physical functioning, and the social functioning score was even better in children with ALL than in matched controls. QOL of children with ALL differed with treatment phase. Effect size varied with function and treatment phase. CONCLUSIONS QOL may change with the progression of treatment, and the timing of these changes varied according to function and problem.
Collapse
Affiliation(s)
- Kyoko Kobayashi
- Department of Child Health Nursing, St Luke's International University Graduate School of Nursing Science, Chuo, Japan
| | - Etsuko Nakagami-Yamaguchi
- Department of Medical Quality and Safety Science, Osaka City University Graduate School of Medicine, Abeno, Japan
| | - Akira Hayakawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Junichi Hara
- Department of Pediatric Hematology Oncology, Children's Medical Cancer Osaka City General Hospital, Toshima, Japan
| | - Sadao Tokimasa
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abeno, Japan
| | - Hideaki Ohta
- Department of Pediatrics, Higashitoyonaka Watanabe Hospital, Toyonaka City, Japan
| | - Yoshiko Hashii
- Department of Developmental Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Rikiishi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Machiko Sawada
- Department of Pediatrics, Takashima Municipal Hospital, Takashima, Shiga, Japan
| | - Kikuko Kuriyama
- Aichi Children's Health and Medical Cancer, Obu, Aichi, Japan
| | | | - Kiyoko Kamibeppu
- Department of Family Nursing, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hirohide Kawasaki
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Megumi Oda
- Graduate School of Health Sciences, Okayama University, Kita, Okayama, Japan
| | - Hiroki Hori
- Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
39
|
Yoshida N, Sakaguchi H, Muramatsu H, Okuno Y, Song C, Dovat S, Shimada A, Ozeki M, Ohnishi H, Teramoto T, Fukao T, Kondo N, Takahashi Y, Matsumoto K, Kato K, Kojima S. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T-cell acute lymphoblastic leukemia. Leukemia 2017; 31:1221-1223. [PMID: 28096536 DOI: 10.1038/leu.2017.25] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- N Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - H Sakaguchi
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - C Song
- Division of Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - S Dovat
- Division of Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - A Shimada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Ozeki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - H Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - T Teramoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - T Fukao
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - N Kondo
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Y Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Matsumoto
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - K Kato
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - S Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Genomic and transcriptional landscape of P2RY8-CRLF2-positive childhood acute lymphoblastic leukemia. Leukemia 2016; 31:1491-1501. [PMID: 27899802 PMCID: PMC5508072 DOI: 10.1038/leu.2016.365] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1's critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Collapse
|
41
|
Sakamoto K, Imamura T, Kanayama T, Yano M, Asai D, Deguchi T, Hashii Y, Tanizawa A, Ohshima Y, Kiyokawa N, Horibe K, Sato A. Ph-like acute lymphoblastic leukemia with a novel PAX5-KIDINS220 fusion transcript. Genes Chromosomes Cancer 2016; 56:278-284. [PMID: 27870151 DOI: 10.1002/gcc.22433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 01/19/2023] Open
Abstract
Although "paired box 5" (PAX5)-related fusion genes are well documented in childhood B-cell precursor acute lymphoblastic leukemia (ALL), these types of fusion with the exception of PAX5-JAK2 are rarely seen in patients with gene expression profiles similar to those of BCR-ABL1 (Philadelphia)-positive ALL (Ph-like ALL). We report a novel fusion of the genes PAX5 and "kinase D-interacting substrate of 220 kDa" (KIDINS220, also known as ARMS) in a Ph-like ALL. As PAX5 is a master regulator of B-lymphocyte differentiation, PAX5 rearrangements induce a differentiation block in B lymphocytes. KIDINS220 is a mediator of multiple receptor signaling pathways, interacts with both T- and B-cell receptors, and is necessary for sustained extracellular signal-regulated kinase (ERK) signaling. Although functional studies are needed, the PAX5-KIDINS220 fusion protein might not only inhibit wild-type PAX5 function, but also promote sustained activation of the ERK signaling pathway through upregulation of KIDINS220. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenichi Sakamoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Takuyo Kanayama
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Mio Yano
- Department of Pediatrics, National Hospital Organization Maizuru Medical Center, Japan
| | - Daisuke Asai
- Department of Pediatrics, Japanese Red Cross Kyoto Daini Hospital, Japan
| | | | | | | | - Yusei Ohshima
- Department of Pediatrics, University of Fukui, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan
| | - Atsushi Sato
- Department of Hematology/Oncology, Miyagi Children's Hospital, Japan
| |
Collapse
|
42
|
Dou H, Chen X, Huang Y, Su Y, Lu L, Yu J, Yin Y, Bao L. Prognostic significance of P2RY8-CRLF2 and CRLF2 overexpression may vary across risk subgroups of childhood B-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2016; 56:135-146. [PMID: 27637012 DOI: 10.1002/gcc.22421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/28/2022] Open
Abstract
The cytokine receptor-like factor 2 (CRLF2) gene plays an important role in early B-cell development. Aberrations in CRLF2 activate the JAK-STAT signaling pathway that contributes to B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of CRLF2 overexpression and P2RY8-CRLF2 fusion in various B-ALL risk subgroups has not been well established. Two hundred seventy-one patients with newly diagnosed childhood B-ALL were enrolled from a Chinese population. The prevalence of CRLF2 overexpression, CRLF2-P2RY8 fusion, CRLF2 F232C mutation, and JAK2 and IL7R mutational status were analyzed, and the prognostic impact of CRLF2 overexpression and P2RY8-CRLF2 on B-ALL was evaluated by assessing their influence on overall survival and event-free survival. CRLF2 overexpression and P2RY8-CRLF2 were found in 19% and 10%, respectively, in the whole cohort. No correlation between CRLF2 overexpression and P2RY8-CRLF2 was observed. CRLF2 F322C and IL7R mutations were not detected in B-ALL cases overexpressing CRLF2, and no JAK2 mutations were found in the whole cohort either. The results showed that CRLF2 overexpression and P2RY8-CRLF2 were associated with a poor outcome in unselected B-ALL. Moreover, in an intermediate risk B-ALL subgroup P2RY8-CRLF2 was correlated with worse survival, whereas in high- and low-risk subgroups, CRLF2 overexpression predicted a poor outcome. Our findings suggest that P2RY8-CRLF2 is an independent prognostic indicator in intermediate risk B-ALL, while CRLF2 overexpression is correlated with an inferior outcome in high- or low-risk B-ALL. Our study demonstrates that the impact of P2RY8-CRLF2 and CRLF2 overexpression on B-ALL survival may differ across risk subgroups. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hu Dou
- Department of Clinical Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Chen
- Center for Clinical Molecular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Research Center for Immunity and Infectious Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongchun Su
- Department of Hematology and Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Lu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Hematology and Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Clinical Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liming Bao
- Center for Clinical Molecular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pathology and Laboratory Medicine, Geisel School of Medicine Dartmouth College, New Hampshire, USA
| |
Collapse
|
43
|
Prognostic significance of IKZF1 deletion in adult B cell acute lymphoblastic leukemia: a meta-analysis. Ann Hematol 2016; 96:215-225. [PMID: 27815723 DOI: 10.1007/s00277-016-2869-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/22/2016] [Indexed: 02/05/2023]
Abstract
The IKAROS family zinc finger 1 (IKZF1) gene is frequently altered in adults with B cell acute lymphoblastic leukemia (ALL). Although many studies have indicated that IKZF1 alterations might be associated with poor outcomes in adults with ALL, the results remain controversial. A previous meta-analysis demonstrated the negative prognostic significance of IKZF1 deletion in ALL. However, most of the included studies (14 out of 15) were conducted in pediatric patients with ALL, and age was identified as a significant source of heterogeneity. Thus, performing the present meta-analysis provides valuable information to further elucidate the prognostic value of IKZF1 deletion in adults with ALL. Eight studies were identified that had been published prior to August 1, 2016. The studies included a total of 1008 patients. Hazard ratios (HRs) with 95% confidence intervals (CIs) of overall survival (OS) and disease-free survival (DFS)/relapse-free survival (RFS)/progression-free survival (PFS)/event-free survival (EFS) were pooled to estimate the prognostic power of IKZF1 deletion. Pooled HRs suggested that IKZF1 deletion had a negative impact on both OS (HR = 1.40, 95% CI 1.13-1.73) and DFS/RFS/PFS/EFS (HR = 1.67, 95% CI 1.28-2.17) in the overall population. Subgroup analyses indicated that IKZF1 deletion could independently predict unfavorable OS (HR = 1.60, 95% CI 1.25-2.06) and DFS/RFS/PFS/EFS (HR = 1.67, 95% CI 1.28-2.17) in BCR-ABL1-negative but not in BCR-ABL1-positive B cell ALL patients. Our meta-analysis suggests that IKZF1 deletion is a poor prognostic factor for adults with B cell ALL and may be more valuable in BCR-ABL1-negative B cell ALL patients.
Collapse
|
44
|
Suzuki K, Okuno Y, Kawashima N, Muramatsu H, Okuno T, Wang X, Kataoka S, Sekiya Y, Hamada M, Murakami N, Kojima D, Narita K, Narita A, Sakaguchi H, Sakaguchi K, Yoshida N, Nishio N, Hama A, Takahashi Y, Kudo K, Kato K, Kojima S. MEF2D-BCL9 Fusion Gene Is Associated With High-Risk Acute B-Cell Precursor Lymphoblastic Leukemia in Adolescents. J Clin Oncol 2016; 34:3451-9. [PMID: 27507882 DOI: 10.1200/jco.2016.66.5547] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) makes up a significant proportion of all pediatric cancers, and relapsed ALL is a leading cause of cancer-associated deaths in children. Identification of risk factors and druggable molecular targets in ALL can lead to a better stratification of treatments and subsequent improvement in prognosis. PATIENTS AND METHODS We enrolled 59 children with relapsed or primary refractory ALL who were treated in our institutions. We primarily performed RNA sequencing (RNA-seq) using patients' leukemic cells to comprehensively detect gene fusions and analyze gene expression profiles. On the basis of results obtained by RNA-seq, we performed genetic validation, functional analysis, and in vitro drug sensitivity testing using patients' samples and an exogenous expression model. RESULTS We identified a total of 26 gene fusions in 22 patients by RNA-seq. Among these, 19 were nonrandom gene fusions already described in ALL, and four of the remaining seven involved identical combination of MEF2D and BCL9. All MEF2D-BCL9-positive patients had B-cell precursor immunophenotype and were characterized as being older in age, being resistant to chemotherapy, having very early relapse, and having leukemic blasts that mimic morphologically mature B-cell leukemia with markedly high expression of HDAC9. Exogenous expression of MEF2D-BCL9 in a B-cell precursor ALL cell line promoted cell growth, increased HDAC9 expression, and induced resistance to dexamethasone. Using a primary culture of leukemic blasts from a patient, we identified several molecular targeted drugs that conferred inhibitory effects in vitro. CONCLUSION A novel MEF2D-BCL9 fusion we identified characterizes a novel subset of pediatric ALL, predicts poor prognosis, and may be a candidate for novel molecular targeting.
Collapse
Affiliation(s)
- Kyogo Suzuki
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yusuke Okuno
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nozomu Kawashima
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Muramatsu
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tatsuya Okuno
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Xinan Wang
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinsuke Kataoka
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuko Sekiya
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Motoharu Hamada
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Norihiro Murakami
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Daiei Kojima
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kotaro Narita
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Atsushi Narita
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirotoshi Sakaguchi
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kimiyoshi Sakaguchi
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nao Yoshida
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuhiro Nishio
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Asahito Hama
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Takahashi
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuko Kudo
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Kato
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seiji Kojima
- Kyogo Suzuki, Yusuke Okuno, Nozomu Kawashima, Hideki Muramatsu, Tatsuya Okuno, Xinan Wang, Shinsuke Kataoka, Yuko Sekiya, Motoharu Hamada, Norihiro Murakami, Daiei Kojima, Atsushi Narita, Nobuhiro Nishio, Asahito Hama, Yoshiyuki Takahashi, and Seiji Kojima, Nagoya University Graduate School of Medicine; Yusuke Okuno and Nobuhiro Nishio, Nagoya University Hospital; Kotaro Narita, Hirotoshi Sakaguchi, Nao Yoshida, and Koji Kato, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya; Kimiyoshi Sakaguchi, Hamamatsu University School of Medicine, Hamamatsu; and Kazuko Kudo, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
45
|
Lee P, Bhansali R, Izraeli S, Hijiya N, Crispino JD. The biology, pathogenesis and clinical aspects of acute lymphoblastic leukemia in children with Down syndrome. Leukemia 2016; 30:1816-23. [PMID: 27285583 DOI: 10.1038/leu.2016.164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Children with Down syndrome (DS) are at a 20-fold increased risk for acute lymphoblastic leukemia (DS-ALL). Although the etiology of this higher risk of developing leukemia remains largely unclear, the recent identification of CRLF2 (cytokine receptor like factor 2) and JAK2 mutations and study of the effect of trisomy of Hmgn1 and Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1A) on B-cell development have shed significant new light on the disease process. Here we focus on the clinical features, biology and genetics of ALL in children with DS. We review the unique characteristics of DS-ALL on both the clinical and molecular levels and discuss the differences in treatments and outcomes in ALL in children with DS compared with those without DS. The identification of new biological insights is expected to pave the way for novel targeted therapies.
Collapse
Affiliation(s)
- P Lee
- Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - R Bhansali
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Izraeli
- Edmond and Lily Safra, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - N Hijiya
- Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J D Crispino
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
46
|
IKZF1 deletion is enriched in pediatric B-cell precursor acute lymphoblastic leukemia patients showing prednisolone resistance. Leukemia 2016; 30:1801-3. [PMID: 27198053 DOI: 10.1038/leu.2016.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Imamura T, Kiyokawa N, Kato M, Imai C, Okamoto Y, Yano M, Ohki K, Yamashita Y, Kodama Y, Saito A, Mori M, Ishimaru S, Deguchi T, Hashii Y, Shimomura Y, Hori T, Kato K, Goto H, Ogawa C, Koh K, Taki T, Manabe A, Sato A, Kikuta A, Adachi S, Horibe K, Ohara A, Watanabe A, Kawano Y, Ishii E, Shimada H. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J 2016; 6:e419. [PMID: 27176795 PMCID: PMC4916297 DOI: 10.1038/bcj.2016.28] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase–PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined.
Collapse
Affiliation(s)
- T Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - N Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - M Kato
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - C Imai
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Y Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - M Yano
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - K Ohki
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Y Yamashita
- National Hospital Organization Nagoya Medical Center, Clinical Research Center, Nagoya, Japan
| | - Y Kodama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - A Saito
- Department of Hematology and Oncology, Hyogo Prefectural Children's Hospital, Kobe, Japan
| | - M Mori
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - S Ishimaru
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - T Deguchi
- Department of Pediatrics, Mie University, Tsu, Japan
| | - Y Hashii
- Department of Pediatrics, Osaka University, Osaka, Japan
| | - Y Shimomura
- Department of Pediatrics, Aichi Medical University School of Medicine, Nagakute, Japan
| | - T Hori
- Department of Pediatrics, Aichi Medical University School of Medicine, Nagakute, Japan
| | - K Kato
- Division of Pediatric Hematology/Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - H Goto
- Division of Hemato-Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - C Ogawa
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - K Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - T Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - A Manabe
- Department of Pediatrics, St Luke's International Hospital, Tokyo, Japan
| | - A Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - A Kikuta
- Department of Pediatrics, Fukushima Medical School, Fukushima, Japan
| | - S Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - A Ohara
- Department of Pediatrics, Toho University, Tokyo, Japan
| | - A Watanabe
- Department of Pediatrics, Nakadori General Hospital, Akita, Japan
| | - Y Kawano
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - E Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan
| | - H Shimada
- Department of Pediatrics, School of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Hirase S, Hasegawa D, Takahashi H, Moriwaki K, Saito A, Kozaki A, Ishida T, Yanai T, Kawasaki K, Yamamoto N, Kubokawa I, Mori T, Hayakawa A, Nishimura N, Nishio H, Iijima K, Kosaka Y. Absolute lymphocyte count at the end of induction therapy is a prognostic factor in childhood acute lymphoblastic leukemia. Int J Hematol 2015; 102:594-601. [DOI: 10.1007/s12185-015-1875-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 11/30/2022]
|
49
|
Jia M, Zhao HZ, Cheng YP, Luo ZB, Zhang JY, Li SS, Xu XJ, Tang YM. High expression of Midkine (MK) indicates poor prognosis in childhood acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2015; 21:69-77. [PMID: 26352402 DOI: 10.1179/1607845415y.0000000050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Midkine (MK) expression has been reported to be correlated with the poor prognosis of patients with various tumors. However, there are no data available about the prognostic value of MK expression in childhood acute lymphoblastic leukemia (ALL). METHODS In this study, MK mRNA expression was determined by real-time polymerase chain reaction in 120 childhood ALL and 30 healthy volunteers. Patients were dichotomized at the median value and divided into two groups: MK(low) group and MK(high) group. RESULTS MK(high) patients had higher white blood cell counts, higher peripheral blood blasts percentages, and higher minimal residual disease levels than MK(low) patients. Moreover, the MK gene was expressed significantly higher in patients with relapsed ALL than in patients who maintained complete remission or at diagnosis. MK(high) patients harbored inferior relapse-free survival (RFS, P = 0.047) and overall survival (OS, P = 0.022) than MK(low) patients, and high expression of MK was found to be independently predictive of inferior OS (P = 0.032) but not RFS (P = 0.077) in the overall cohort. CONCLUSION AND DISCUSSION MK high expression is an independent adverse prognostic factor in childhood ALL. Its level may be incorporated into an improved risk classification system for ALL and suggest the need of alternative regimens.
Collapse
Affiliation(s)
- Ming Jia
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Hai-Zhao Zhao
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Yu-Ping Cheng
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Ze-Bin Luo
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Jing-Ying Zhang
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Si-Si Li
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Xiao-Jun Xu
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| | - Yong-Min Tang
- a Division of Hematology-Oncology , Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education , Hangzhou 310003 , PR China
| |
Collapse
|
50
|
Othman MAK, Melo JB, Carreira IM, Rincic M, Glaser A, Grygalewicz B, Gruhn B, Wilhelm K, Rittscher K, Meyer B, Silva MLM, de Jesus Marques Salles T, Liehr T. High rates of submicroscopic aberrations in karyotypically normal acute lymphoblastic leukemia. Mol Cytogenet 2015; 8:45. [PMID: 26136832 PMCID: PMC4486437 DOI: 10.1186/s13039-015-0153-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/20/2015] [Indexed: 11/16/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is not a single uniform disease. It consists of several subgroups with different cytogenetic and molecular genetic aberrations, clinical presentations and outcomes. Banding cytogenetics plays a pivotal role in the detection of recurrent chromosomal rearrangements and is the starting point of genetic analysis in ALL, still. Nowadays, molecular (cyto)genetic tools provide substantially to identify previously non-detectable, so-called cryptic chromosomal aberrations in ALL. However, ALL according to banding cytogenetics with normal karyotype - in short cytogenetically normal ALL (CN-ALL) - represent up to ~50 % of all new diagnosed ALL cases. The overall goal of this study was to identify and characterize the rate of cryptic alterations in CN-ALL and to rule out if one single routine approach may be sufficient to detect most of the cryptic alterations present. Results Sixty-one ALL patients with CN-ALL were introduced in this study. All of them underwent high resolution fluorescence in situ hybridization (FISH) analysis. Also DNA could be extracted from 34 ALL samples. These DNA-samples were studied using a commercially available MLPA (multiplex ligation-dependent probe amplification) probe set directed against 37 loci in hematological malignancies and/or array-comparative genomic hybridization (aCGH). Chromosomal aberrations were detected in 21 of 61 samples (~34 %) applying FISH approaches: structural abnormalities were present in 15 cases and even numerical ones were identified in 6 cases. Applying molecular approaches copy number alterations (CNAs) were detected in 27/34 samples. Overall, 126 CNAs were identified and only 34 of them were detectable by MLPA (~27 %). Loss of CNs was identified in ~80 % while gain of CNs was present in ~20 % of the 126 CNAs. A maximum of 13 aberrations was detected per case; however, only one aberration per case was found in 8 of all in detail studied 34 cases. Of special interest among the detected CNAs are the following new findings: del(15)(q26.1q26.1) including CHD2 gene was found in 20 % of the studied ALL cases, dup(18)(q21.2q21.2) with the DCC gene was present in 9 % of the cases, and the CDK6 gene in 7q21.2 was deleted in 12 % of the here in detail studied ALL cases. Conclusions In conclusion, high resolution molecular cytogenetic tools and molecular approaches like MLPA and aCGH need to be combined in a cost-efficient way, to identify disease and progression causing alterations in ALL, as majority of them are cryptic in banding cytogenetic analyses. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0153-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Joana B Melo
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal ; CIMAGO, Centro de Investigação em Meio Ambiente, Genéticae Oncobiologia, Coimbra, Portugal
| | - Isabel M Carreira
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal ; CIMAGO, Centro de Investigação em Meio Ambiente, Genéticae Oncobiologia, Coimbra, Portugal
| | - Martina Rincic
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany ; Croatian Institute of Brain Research, Zagreb, Croatia
| | - Anita Glaser
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie Memorial Cancer Centre and Institute, Warsaw, Poland
| | - Bernd Gruhn
- Department of Pediatrics (Oncology and Hematology), Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Kathleen Wilhelm
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany ; Department of Pediatrics (Oncology and Hematology), Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Katharina Rittscher
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | | | - Maria Luiza Macedo Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, RJ Brazil ; Post Graduation Program in Oncology, National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Terezinha de Jesus Marques Salles
- Pediatric Oncohematology Center, Hospital Oswaldo Cruz/ Pos Graduation Course of the Faculty of Medical Sciences, University of Pernambuco, Recife, PE Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| |
Collapse
|