1
|
Ghias M, Ahmed MN, Sajjad B, Ibrahim MA, Rashid U, Shah SWA, Shoaib M, Madni M, Tahir MN, Macías MA. 1-Hydroxynaphthalene-4-trifluoromethylphenyl chalcone and 3‑hydroxy-4-trifluoromethylphenyl flavone: A combined experimental, structural, in vitro AChE, BChE and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Bioorg Chem 2021; 116:105279. [PMID: 34509799 DOI: 10.1016/j.bioorg.2021.105279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 μg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 μg mL-1 and 78.0 μg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 μg mL-1), Acinetobacter baumannii (MIC = 15.6 μg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 μg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.
Collapse
|
3
|
N-{2-[(3-Oxo-1,3-dihydro-2-benzofuran-1-yl)acetyl]phenyl}acetamide. MOLBANK 2021. [DOI: 10.3390/m1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the aim of obtaining different derivatives belonging to the isoindolo[2,1-a]quinoline family, we have synthesized a novel N-{2-[(3-oxo-1,3-dihydro-2-benzofuran-1-yl)acetyl]phenyl}acetamide derivative by a Claisen–Smichdt-type condensation reaction in 75% yield.
Collapse
|
4
|
Sharma A, Saraswat A. Overview on cumulative synthetic approaches for chalcone based functionalized scaffolds. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Dos Santos MB, Bertholin Anselmo D, de Oliveira JG, Jardim-Perassi BV, Alves Monteiro D, Silva G, Gomes E, Lucia Fachin A, Marins M, de Campos Zuccari DAP, Octavio Regasini L. Antiproliferative activity and p53 upregulation effects of chalcones on human breast cancer cells. J Enzyme Inhib Med Chem 2019; 34:1093-1099. [PMID: 31117836 PMCID: PMC6534249 DOI: 10.1080/14756366.2019.1615485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chalcones are valuable structures for drug discovery due to their broad bioactivity spectrum. In this study, we evaluated 20 synthetic chalcones against estrogen-receptor-positive breast cancer cells (MCF-7 line) and triple-negative breast cancer (TNBC) cells (MDA-MB-231 line). Antiproliferative screening by MTT assay resulted in two most active compounds: 2-fluoro-4’-aminochalcone (11) and 3-pyridyl-4’-aminochalcone (17). Their IC50 values ranged from 13.2 to 34.7 µM against both cell lines. Selected chalcones are weak basic compounds and maintained their antiproliferative activity under acidosis conditions (pH 6.7), indicating their resistance to ion-trapping effect. The mode of breast cancer cells death was investigated and chalcones 11 and 17 were able to induce apoptosis rather than necrosis in both lines. Antiproliferative target investigations with MCF-7 cells suggested 11 and 17 upregulated p53 protein expression and did not affect Sp1 protein expression. Future studies on chalcones 11 and 17 can define their in vivo therapeutic potential.
Collapse
Affiliation(s)
- Mariana Bastos Dos Santos
- a Department of Chemistry and Environmental Chemistry, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) , São Paulo State University (UNESP) , São Paulo , Brazil
| | - Daiane Bertholin Anselmo
- a Department of Chemistry and Environmental Chemistry, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) , São Paulo State University (UNESP) , São Paulo , Brazil
| | | | - Bruna V Jardim-Perassi
- b Department of Molecular Biology , Medicine College of São José do Rio Preto (FAMERP) , São Paulo , Brazil
| | - Diego Alves Monteiro
- c Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) , São Paulo State University (UNESP) , São Paulo , Brazil
| | - Gabriel Silva
- d Biotechnology Unit , University of Ribeirão Preto (UNAERP) , São Paulo , Brazil
| | - Eleni Gomes
- c Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) , São Paulo State University (UNESP) , São Paulo , Brazil
| | - Ana Lucia Fachin
- d Biotechnology Unit , University of Ribeirão Preto (UNAERP) , São Paulo , Brazil
| | - Mozart Marins
- d Biotechnology Unit , University of Ribeirão Preto (UNAERP) , São Paulo , Brazil
| | | | - Luis Octavio Regasini
- a Department of Chemistry and Environmental Chemistry, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) , São Paulo State University (UNESP) , São Paulo , Brazil
| |
Collapse
|
6
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 791] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
7
|
Shabbir M, Akhter Z, Ashraf AR, Bolte M, Wahid S, Mirza B. Pharmacological evaluation of ONNO donor quadridentate Schiff bases. ACTA ACUST UNITED AC 2017. [DOI: 10.5155/eurjchem.8.1.46-51.1535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Sirajuddin M, Ali S, McKee V, Khan SZ, Malook K. Synthesis, spectroscopic characterization, crystal structure, DNA interaction study and invitro biological screenings of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:244-250. [PMID: 25022495 DOI: 10.1016/j.saa.2014.06.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
The titled compound, 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid was synthesized and characterized by various techniques like elemental analyses, FT-IR, NMR ((1)H, and (13)C) and single crystal X-ray structural analysis. The appearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra conform the formation of the compound. A good agreement was found between the calculated values of C, H, N and found values in elemental analysis that show the purity of the compound. Protons H2 and H3 are in cis conformation with each other as conformed both from (1)H NMR as well as from single crystal X-ray analysis. The molecular structure of the title compound, C₁₀H₁₀NO₃Cl, is stabilized by short intramolecular OH---O hydrogen bonds within the molecule. In the crystal structure, intermolecular NH---O hydrogen bonds link molecules into zigzag chains resulting in a dendrimer like structure. The title compound was screened for biological activities like interaction with DNA, cytotoxicity, antitumor and antioxidant activities. DNA interaction study reveals that the binding mode of interaction of the compound with SS-DNA is intercalative as it results in hypochromism along with significant red shift of 5 nm. It was also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid, at higher concentration. The antitumor activity data of the compound shows that it can be used as potent antitumor agent.
Collapse
Affiliation(s)
- Muhammad Sirajuddin
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Vickie McKee
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, UK
| | - Shahan Zeb Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Khan Malook
- Centralized Research Laboratory (CRL), University of Peshawar, K.P.K., Pakistan
| |
Collapse
|
10
|
Abstract
Aromatic amines 1-amino-4-phenoxybenzene (A-1A), 2-(4-aminophenoxy) naphthalene (A-2A), and 1-(4-aminophenoxy) naphthalene (A-3A) were synthesized by the reduction of corresponding nitroaromatics with hydrazine monohydrate and Pd/C 5% (w/w). The newly synthesized compounds were characterized by FTIR,1H NMR,13C NMR, UV-visible spectrophotometer, and mass spectrometry and their biological activities were investigated along with structurally similar 4-(4-aminophenyloxy) biphenyl (A-A). Results of brine shrimp cytotoxicity assay showed that almost all of the compounds had LD50values <1 μg/mL. The compounds also showed significant antitumor activity with IC50values ranging from 67.45 to 12.2 µgmL−1. The cytotoxicity and antitumor studies correlate the results which suggests the anticancerous nature of compounds. During the interaction study of these compounds with DNA, all of the compounds showed hyperchromic effect indicating strong interaction through binding with the grooves of DNA. Moreover, A-3A also showed decrease inλmaxconfirming higher propensity for DNA groove binding. In DPPH free radical scavenging assay, all the compounds showed potential antioxidant capability. The compounds were highly active in protecting DNA against hydroxyl free radicals. DNA interaction and antioxidant results back up each other indicating that these compounds have potential to be used as cancer chemopreventive agents. Additionally, one compound (A-1A) showed significant antibacterial and antifungal activity as well.
Collapse
|
11
|
Sirajuddin M, Ali S, McKee V, Sohail M, Pasha H. Potentially bioactive organotin(IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur J Med Chem 2014; 84:343-63. [PMID: 25036793 DOI: 10.1016/j.ejmech.2014.07.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 01/27/2023]
Abstract
Fourteen new organotin(IV) complexes with general formula R2SnL2 or R3SnL where R = CH3, C2H5, C4H9, C6H5, C6H11, CH2-C6H5, C(CH3)3, C8H17 and L = N-[(2-methoxyphenyl)]-4-oxo-4-[oxy]butanamide were synthesized and characterized by elemental analyses, FT-IR, NMR ((1)H, (13)C and (119)Sn), mass spectrometry and single crystal X-ray structural analysis. Crystallographic data for four triorganotin(IV) complexes (R3SnL, R = CH3, C2H5, C4H9, CH2-C6H5) showed the tin has approximate trigonal bipyramidal geometry with the R groups in the trigonal plane. The carboxylate groups of ligands L bridge adjacent tin atoms, resulting in polymeric chains. In case of the diorganotin(IV) derivatives a six-coordinate geometry at the tin atom is proposed from spectroscopic evidence. The Me-Sn-Me bond angle in complex 7 was determined from the (2)J[(119)Sn-(1)H] value as 166.3° that falls in the range of six-coordinate geometry. The ligand and its complexes (1-14) were screened for their antimicrobial, antitumor, cytotoxic and antileishmanial activities and found to be biologically active. The ligand and its complexes bind to DNA via intercalative interactions resulting in hypochromism and minor bathochromic shifts as confirmed by UV-visible spectroscopy. Based on in vitro studies such as the potato disc method, the synthesized compounds were found to possess significant antitumor activity. Also, from cytotoxicity and DNA interaction studies, these compounds can also be used for the prevention and treatment of cancer. Gel electrophoresis assay was used to investigate the damage to double stranded super coiled plasmid pBR322 DNA by the synthesized compounds and compounds 1 and 7 were found to cause the maximum damage. All the synthesized compounds exhibit strong antileishmanial activity that was even higher than that of Amphotericin B, with significant cytotoxicity. This study, therefore, demonstrated the potential use of these compounds as source of novel agents for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Muhammad Sirajuddin
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Vickie McKee
- Department of Chemistry, Loughborough University, Loughborough, Leics LE11 3TU, UK
| | - Manzar Sohail
- Center of Excellence for Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hammad Pasha
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
12
|
Nazir S, Ansari FL, Hussain T, Mazhar K, Muazzam AG, Qasmi ZUH, Makhmoor T, Noureen H, Mirza B. Brine shrimp lethality assay 'an effective prescreen': microwave-assisted synthesis, BSL toxicity and 3DQSAR studies-based designing, docking and antitumor evaluation of potent chalcones. PHARMACEUTICAL BIOLOGY 2013; 51:1091-1103. [PMID: 23745524 DOI: 10.3109/13880209.2013.777930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT In the course of searching potential antitumor agents from a library of chalcones synthesized under microwave irradiations, the brine shrimp lethality (BSL) assay and a 3D structure-activity relationship (3DQSAR) studies were followed by the antitumor evaluation of most potent analogues. OBJECTIVE The objective of the current study was to effectively use the BSL assay for the identification of potential cytotoxic analogues from a set of compounds. METHODS We applied the comparative molecular field analysis (CoMFA) and devised 3DQSAR on 33 synthesized chalcones leading to prediction of five related compounds with improved activity. The scope of BSL assay for the prediction of antitumor potency was tested through the in vitro antitumor studies against six human tumor cell-lines, docking studies and the tubulin-polymerization assay. RESULTS The newly designed compounds 34-38 displayed very promising cytotoxic potency. From our results, the BSL toxicity, antitumor efficacy and docking outcomes could be easily co-related. CONCLUSION The study draws a very good relationship between a simple, inexpensive, and bench-top BSL assay and the antitumor potential of the cytotoxic compounds. Devising the CoMFA analysis helped in designing chalcones with improved cytotoxic potential as displayed through their BSL and cytotoxic activity against human tumor cell lines. The studies are noteworthy as such comprehensive studies were never performed before on the BSL assay. The present studies widen the scope of the BSL model that may prove quite helpful as a preliminary screen in the antitumor drug designing and synthesis expeditions.
Collapse
Affiliation(s)
- Samina Nazir
- NanoScience and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dias TA, Duarte CL, Lima CF, Proença MF, Pereira-Wilson C. Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. Eur J Med Chem 2013; 65:500-10. [DOI: 10.1016/j.ejmech.2013.04.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
14
|
|
15
|
Jafri L, Ansari FL, Jamil M, Kalsoom S, Qureishi S, Mirza B. Microwave-assisted Synthesis and Bioevaluation of Some Semicarbazones. Chem Biol Drug Des 2012; 79:950-9. [DOI: 10.1111/j.1747-0285.2012.01360.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Lee SC, Kang NY, Park SJ, Yun SW, Chandran Y, Chang YT. Development of a fluorescent chalcone library and its application in the discovery of a mouse embryonic stem cell probe. Chem Commun (Camb) 2012; 48:6681-3. [DOI: 10.1039/c2cc31662e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kahriman N, Iskender NY, Yücel M, Yayli N, Demir E, Demirbağ Z. Microwave-assisted synthesis of 1,3′-diaza-flavanone/flavone and their alkyl derivatives with antimicrobial activity. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Alvim J, Severino RP, Marques EF, Martinelli AM, Vieira PC, Fernandes JB, da Silva MFDGF, Corrêa AG. Solution Phase Synthesis of a Combinatorial Library of Chalcones and Flavones as Potent Cathepsin V Inhibitors. ACTA ACUST UNITED AC 2010; 12:687-95. [DOI: 10.1021/cc100076k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Joel Alvim
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - Richele P. Severino
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - Emerson F. Marques
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - Ariane M. Martinelli
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - Paulo C. Vieira
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - João B. Fernandes
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - M. Fatima das G. F. da Silva
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| | - Arlene G. Corrêa
- Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil
| |
Collapse
|
19
|
Shah A, Khan AM, Qureshi R, Ansari FL, Nazar MF, Shah SS. Redox behavior of anticancer chalcone on a glassy carbon electrode and evaluation of its interaction parameters with DNA. Int J Mol Sci 2008; 9:1424-1434. [PMID: 19325813 PMCID: PMC2635733 DOI: 10.3390/ijms9081424] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/16/2022] Open
Abstract
The interaction of anticancer chalcone [AMC, 1-(4′-aminophenyl)-3-(4-N,N-dimethylphenyl)-2-propen-1-one] with DNA has been explored using electrochemical, spectroscopic and viscometric techniques. A shift in peak potential and decrease in peak current were observed in cyclic voltammetry and hypochromism accompanied with bathochromic shift were noticed in UV-Vis absorption spectroscopy. These findings were taken as evidence for AMC –DNA intercalation. A binding constant (K) with a value of 6.15 × 105 M−1 was obtained from CV data, which was also confirmed by UV-Vis absorption titration. Moreover, the diffusion coefficient of the drug with and without DNA (Db and Du), heterogeneous electron transfer rate constant (ko) and electron affinity (A) were also calculated from electrochemical data.
Collapse
Affiliation(s)
| | - Asad M. Khan
- Author to whom correspondence should be addressed; E-Mail:
(A. K.); Tel. +92-51-90642047; Fax: +92-51-90642242
| | | | | | | | | |
Collapse
|