1
|
Calaça Serrão A, Wunnava S, Dass AV, Ufer L, Schwintek P, Mast CB, Braun D. High-Fidelity RNA Copying via 2',3'-Cyclic Phosphate Ligation. J Am Chem Soc 2024; 146:8887-8894. [PMID: 38503430 PMCID: PMC10995993 DOI: 10.1021/jacs.3c10813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Templated ligation offers an efficient approach to replicate long strands in an RNA world. The 2',3'-cyclic phosphate (>P) is a prebiotically available activation that also forms during RNA hydrolysis. Using gel electrophoresis and high-performance liquid chromatography, we found that the templated ligation of RNA with >P proceeds in simple low-salt aqueous solutions with 1 mM MgCl2 under alkaline pH ranging from 9 to 11 and temperatures from -20 to 25 °C. No additional catalysts were required. In contrast to previous reports, we found an increase in the number of canonical linkages to 50%. The reaction proceeds in a sequence-specific manner, with an experimentally determined ligation fidelity of 82% at the 3' end and 91% at the 5' end of the ligation site. With splinted oligomers, five ligations created a 96-mer strand, demonstrating a pathway for the ribozyme assembly. Due to the low salt requirements, the ligation conditions will be compatible with strand separation. Templated ligation mediated by 2',3'-cyclic phosphate in alkaline conditions therefore offers a performant replication and elongation reaction for RNA on early Earth.
Collapse
Affiliation(s)
- Adriana Calaça Serrão
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
| | - Sreekar Wunnava
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
| | - Avinash V. Dass
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
- Department
of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4M1, Canada
| | - Lennard Ufer
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
| | - Philipp Schwintek
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
| | - Christof B. Mast
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
| | - Dieter Braun
- Department
of Physics, Center for Nanoscience, Ludwig-Maximilians-Universität
München, Amalienstraße 54, 80799 Munich, Germany
| |
Collapse
|
2
|
Mizuuchi R, Ichihashi N. Minimal RNA self-reproduction discovered from a random pool of oligomers. Chem Sci 2023; 14:7656-7664. [PMID: 37476714 PMCID: PMC10355099 DOI: 10.1039/d3sc01940c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/18/2023] [Indexed: 07/22/2023] Open
Abstract
The emergence of RNA self-reproduction from prebiotic components would have been crucial in developing a genetic system during the origins of life. However, all known self-reproducing RNA molecules are complex ribozymes, and how they could have arisen from abiotic materials remains unclear. Therefore, it has been proposed that the first self-reproducing RNA may have been short oligomers that assemble their components as templates. Here, we sought such minimal RNA self-reproduction in prebiotically accessible short random RNA pools that undergo spontaneous ligation and recombination. By examining enriched RNA families with common motifs, we identified a 20-nucleotide (nt) RNA variant that self-reproduces via template-directed ligation of two 10 nt oligonucleotides. The RNA oligomer contains a 2'-5' phosphodiester bond, which typically forms during prebiotically plausible RNA synthesis. This non-canonical linkage helps prevent the formation of inactive complexes between self-complementary oligomers while decreasing the ligation efficiency. The system appears to possess an autocatalytic property consistent with exponential self-reproduction despite the limitation of forming a ternary complex of the template and two substrates, similar to the behavior of a much larger ligase ribozyme. Such a minimal, ribozyme-independent RNA self-reproduction may represent the first step in the emergence of an RNA-based genetic system from primordial components. Simultaneously, our examination of random RNA pools highlights the likelihood that complex species interactions were necessary to initiate RNA reproduction.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University Shinjuku Tokyo 162-8480 Japan
- JST, FOREST Kawaguchi Saitama 332-0012 Japan
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo Meguro Tokyo 153-8902 Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo Meguro Tokyo 153-8902 Japan
- Universal Biology Institute, The University of Tokyo Meguro Tokyo 153-8902 Japan
| |
Collapse
|
3
|
Affiliation(s)
- Matthew A. Pasek
- School of Geosciences, University of South Florida, 4202 E. Fowler Avenue NES 204, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Wright TH, Giurgiu C, Zhang W, Radakovic A, O'Flaherty DK, Zhou L, Szostak JW. Prebiotically Plausible "Patching" of RNA Backbone Cleavage through a 3'-5' Pyrophosphate Linkage. J Am Chem Soc 2019; 141:18104-18112. [PMID: 31651170 PMCID: PMC7577263 DOI: 10.1021/jacs.9b08237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Achieving multiple cycles of RNA
replication within a model protocell
would be a critical step toward demonstrating a path from prebiotic
chemistry to cellular biology. Any model for early life based on an
“RNA world” must account for RNA strand cleavage and
hydrolysis, which would degrade primitive genetic information and
lead to an accumulation of truncated, phosphate-terminated strands.
We show here that cleavage of the phosphodiester backbone is not an
end point for RNA replication. Instead, 3′-phosphate-terminated
RNA strands can participate in template-directed copying reactions
with activated ribonucleotide monomers. These reactions form a pyrophosphate
linkage, the stability of which we have characterized in the context
of RNA copying chemistry. The presence of free magnesium cations results
in cleavage of the pyrophosphate bond within minutes. However, we
found that the pyrophosphate bond is relatively stable within an RNA
duplex and in the presence of chelated magnesium. We show that, under
these conditions, pyrophosphate-linked RNA can act as a template for
the polymerization of ribonucleotides into canonical 3′–5′
phosphodiester-linked RNA. We suggest that primer extension of 3′-phosphate-terminated
RNA followed by template-directed copying represents a plausible nonenzymatic
pathway for the salvage and recovery of genetic information following
strand cleavage.
Collapse
Affiliation(s)
- Tom H Wright
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| | - Constantin Giurgiu
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| | - Wen Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| | - Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States
| |
Collapse
|
5
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
6
|
The difficult case of an RNA-only origin of life. Emerg Top Life Sci 2019; 3:469-475. [PMID: 33523163 PMCID: PMC7289000 DOI: 10.1042/etls20190024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
The RNA world hypothesis is probably the most extensively studied model for the emergence of life on Earth. Despite a large body of evidence supporting the idea that RNA is capable of kick-starting autocatalytic self-replication and thus initiating the emergence of life, seemingly insurmountable weaknesses in the theory have also been highlighted. These problems could be overcome by novel experimental approaches, including out-of-equilibrium environments, and the exploration of an early co-evolution of RNA and other key biomolecules such as peptides and DNA, which might be necessary to mitigate the shortcomings of RNA-only systems.
Collapse
|
7
|
Smail BA, Clifton BE, Mizuuchi R, Lehman N. Spontaneous advent of genetic diversity in RNA populations through multiple recombination mechanisms. RNA (NEW YORK, N.Y.) 2019; 25:453-464. [PMID: 30670484 PMCID: PMC6426292 DOI: 10.1261/rna.068908.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
There are several plausible abiotic synthetic routes from prebiotic chemical materials to ribonucleotides and even short RNA oligomers. However, for refinement of the RNA World hypothesis to help explain the origins of life on the Earth, there needs to be a manner by which such oligomers can increase their length and expand their sequence diversity. Oligomers longer than at least 10-20 nucleotides would be needed for raw material for subsequent natural selection. Here, we explore spontaneous RNA-RNA recombination as a facile means by which such length and diversity enhancement could have been realized. Motivated by the discovery that RNA oligomers stored for long periods of time in the freezer expand their lengths, we systematically investigated RNA-RNA recombination processes. In addition to one known mechanism, we discovered at least three new mechanisms. In these, one RNA oligomer acts as a splint to catalyze the hybridization of two other oligomers and facilitates the attack of a 5'-OH, a 3'-OH, or a 2'-OH nucleophile of one oligomer onto a target atom of another. This leads to the displacement of one RNA fragment and the production of new recombinant oligomers. We show that this process can explain the spontaneous emergence of sequence complexity, both in vitro and in silico.
Collapse
Affiliation(s)
- Benedict A Smail
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | - Bryce E Clifton
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | - Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| |
Collapse
|
8
|
Mizuuchi R, Lehman N. Limited Sequence Diversity Within a Population Supports Prebiotic RNA Reproduction. Life (Basel) 2019; 9:life9010020. [PMID: 30795529 PMCID: PMC6463154 DOI: 10.3390/life9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
The origins of life require the emergence of informational polymers capable of reproduction. In the RNA world on the primordial Earth, reproducible RNA molecules would have arisen from a mixture of compositionally biased, poorly available, short RNA sequences in prebiotic environments. However, it remains unclear what level of sequence diversity within a small subset of population is required to initiate RNA reproduction by prebiotic mechanisms. Here, using a simulation for template-directed recombination and ligation, we explore the effect of sequence diversity in a given population for the onset of RNA reproduction. We show that RNA reproduction is improbable in low and high diversity of finite populations; however, it could robustly occur in an intermediate sequence diversity. The intermediate range broadens toward higher diversity as population size increases. We also found that emergent reproducible RNAs likely form autocatalytic networks and collectively reproduce by catalyzing the formation of each other, allowing the expansion of information capacity. These results highlight the potential of abiotic RNAs, neither abundant nor diverse, to kick-start autocatalytic reproduction through spontaneous network formation.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| |
Collapse
|
9
|
Mutschler H, Taylor AI, Porebski BT, Lightowlers A, Houlihan G, Abramov M, Herdewijn P, Holliger P. Random-sequence genetic oligomer pools display an innate potential for ligation and recombination. eLife 2018; 7:43022. [PMID: 30461419 PMCID: PMC6289569 DOI: 10.7554/elife.43022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Recombination, the exchange of information between different genetic polymer strands, is of fundamental importance in biology for genome maintenance and genetic diversification and is mediated by dedicated recombinase enzymes. Here, we describe an innate capacity for non-enzymatic recombination (and ligation) in random-sequence genetic oligomer pools. Specifically, we examine random and semi-random eicosamer (N20) pools of RNA, DNA and the unnatural genetic polymers ANA (arabino-), HNA (hexitol-) and AtNA (altritol-nucleic acids). While DNA, ANA and HNA pools proved inert, RNA (and to a lesser extent AtNA) pools displayed diverse modes of spontaneous intermolecular recombination, connecting recombination mechanistically to the vicinal ring cis-diol configuration shared by RNA and AtNA. Thus, the chemical constitution that renders both susceptible to hydrolysis emerges as the fundamental determinant of an innate capacity for recombination, which is shown to promote a concomitant increase in compositional, informational and structural pool complexity and hence evolutionary potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Mikhail Abramov
- REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Piet Herdewijn
- REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
10
|
Pesce D, Lehman N, de Visser JAGM. Sex in a test tube: testing the benefits of in vitro recombination. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0529. [PMID: 27619693 DOI: 10.1098/rstb.2015.0529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 01/06/2023] Open
Abstract
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Diego Pesce
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | | |
Collapse
|
11
|
Staroseletz Y, Nechaev S, Bichenkova E, Bryce RA, Watson C, Vlassov V, Zenkova M. Non-enzymatic recombination of RNA: Ligation in loops. Biochim Biophys Acta Gen Subj 2017; 1862:705-725. [PMID: 29097301 DOI: 10.1016/j.bbagen.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND While the RNA world hypothesis is widely accepted, it is still far from complete: the existence of self-replicating ribozyme, consisting of potentially hundreds of nucleotides, is a core assumption for the majority of RNA world models. The appearance of such long RNA molecules under prebiotic conditions is not self-evident. Recombination seems to be a plausible way of creating RNA diversity, resulting in the appearance of functional RNAs, capable of self-replicating. METHODS We report here on the study of recombination process modelled with two 96 nts RNA fragments. Detection of recombination products was performed with RT-PCR followed by TA-cloning and Sanger sequencing. RESULTS A wide range of recombinant products was detected. We found that (i) the most efficient ligation was observed for RNA species forming bulges or internal loops, with ligation partners located within the loop; (ii) a strong preference was observed for formation of a few types of major products with a large variety of minor products; (iii) ligation could occur with participation of either 2',3'-cyclophosphate or 5'-ppp; (iv) the presence of key reaction components, i.e. 5'ppp-RNAs, enabled the formation of additional types of product; (v) molecular dynamics simulations of one of the most abundant products suggests that the ligation results in a preferable formation of 2'-5'- rather than 3'-5'-linkages. CONCLUSIONS The study demonstrates regularities of new RNA molecules formation with non-enzymatic recombination process. GENERAL SIGNIFICANCE Our findings provide new data supporting the RNA World hypothesis and show the way of new RNA sequences emergence under prebiotic conditions.
Collapse
Affiliation(s)
- Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey Nechaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Elena Bichenkova
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Catherine Watson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
12
|
Watson C, Staroseletz Y, Zenkova MA, Bryce R, Bichenkova EV. 82 Structural aspects of non-enzymatic recombination in viral RNA. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Pino S, Sponer JE, Costanzo G, Saladino R, Mauro ED. From formamide to RNA, the path is tenuous but continuous. Life (Basel) 2015; 5:372-84. [PMID: 25647486 PMCID: PMC4390857 DOI: 10.3390/life5010372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/11/2023] Open
Abstract
Reactions of formamide (NH2COH) in the presence of catalysts of both terrestrial and meteoritic origin yield, in plausible and variegated conditions, a large panel of precursors of (pre)genetic and (pre)metabolic interest. Formamide chemistry potentially satisfies all of the steps from the very initial precursors to RNA. Water chemistry enters the scene in RNA non-enzymatic synthesis and recombination.
Collapse
Affiliation(s)
- Samanta Pino
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | - Ernesto Di Mauro
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
14
|
Stadlbauer P, Šponer J, Costanzo G, Di Mauro E, Pino S, Šponer JE. Tetraloop-like geometries could form the basis of the catalytic activity of the most ancient ribooligonucleotides. Chemistry 2015; 21:3596-604. [PMID: 25640446 DOI: 10.1002/chem.201406140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 11/09/2022]
Abstract
The origin of the catalytic activity of ancient oligonucleotides is a largely unexplored field of contemporary science. In the current work we use molecular dynamics simulations to investigate the plausibility of tetraloop-like overhang geometries to initiate transphosphorylation reactions that lead to ligation and terminal cleavage in simple, Watson-Crick (WC) complementary oligoC/oligoG sequences observed experimentally. We show a series of examples of known tetraloop architectures, which can be adopted by the unpaired overhangs of short oligonucleotide sequences for a sufficiently long time to enable chemical reactions that lead to simple ribozyme-like catalytic activity. Thus, our computations demonstrate that the role of non-WC interactions at the emergence of the most ancient catalytic oligonucleotides could be more significant than ever believed.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno (Czech Republic)
| | | | | | | | | | | |
Collapse
|
15
|
Martin LL, Unrau PJ, Müller UF. RNA synthesis by in vitro selected ribozymes for recreating an RNA world. Life (Basel) 2015; 5:247-68. [PMID: 25610978 PMCID: PMC4390851 DOI: 10.3390/life5010247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 01/20/2023] Open
Abstract
The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory.
Collapse
Affiliation(s)
- Lyssa L Martin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356, USA.
| |
Collapse
|
16
|
Ribozyme Activity of RNA Nonenzymatically Polymerized from 3′,5′-Cyclic GMP. ENTROPY 2013. [DOI: 10.3390/e15125362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Petkovic S, Müller S. RNA self-processing: formation of cyclic species and concatemers from a small engineered RNA. FEBS Lett 2013; 587:2435-40. [PMID: 23796421 DOI: 10.1016/j.febslet.2013.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023]
Abstract
We have engineered a self-processing RNA, derived from the hairpin ribozyme that runs through a cascade of cleavage and ligation reactions thereby changing its topology. The first two cleavage events leave the resulting RNA with a 5'-OH group and a 2',3'-cyclic phosphate. Thus, upon refolding, intramolecular ligation delivers a cyclic species. In addition, we demonstrate formation of concatemers resulting from multiple intermolecular ligations. Our results demonstrate the potential of RNA for self-supported topology changes and support the suggestion of 2',3'-cyclic phosphates being suitable activated building blocks for reversible phosphodiester bond formation in the RNA world.
Collapse
Affiliation(s)
- Sonja Petkovic
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | | |
Collapse
|
18
|
Bujarski JJ. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:68. [PMID: 23533000 PMCID: PMC3607795 DOI: 10.3389/fpls.2013.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 05/09/2023]
Abstract
RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.
Collapse
Affiliation(s)
- Jozef J. Bujarski
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois UniversityDeKalb, IL, USA
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Jozef J. Bujarski, Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, Montgomery Hall, DeKalb, IL 60115, USA. e-mail:
| |
Collapse
|
19
|
Genomic sequences of two novel levivirus single-stranded RNA coliphages (family Leviviridae): evidence for recombinationin environmental strains. Viruses 2012; 4:1548-68. [PMID: 23170172 PMCID: PMC3499819 DOI: 10.3390/v4091548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages are likely the most abundant entities in the aquatic environment, yet knowledge of their ecology is limited. During a fecal source-tracking study, two genetically novel Leviviridae strains were discovered. Although the novel strains were isolated from coastal waters 1130 km apart (North Carolina and Rhode Island, USA), these strains shared 97% nucleotide similarity and 97–100% amino acid similarity. When the novel strains were compared to nine Levivirus genogroup I strains, they shared 95–100% similarity among the maturation, capsid and lysis proteins, but only 84–85% in the RNA-dependent RNA polymerase gene. Further bioinformatic analyses suggested a recombination event occurred. To the best of our knowledge, this is the first description of viral recombinants in environmental Leviviridae ssRNA bacteriophages.
Collapse
|
20
|
Abstract
When RNA is replicated in cell-free systems, a ubiquitous problem is the hijacking of the system by short parasitic RNA sequences. In this issue of Chemistry & Biology, Bansho et al. show that compartmentalization into water-in-oil droplets can ameliorate this problem, but only if the droplets are small. This result helps to both recapitulate abiogenesis and optimize synthetic biology.
Collapse
|
21
|
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev 2012; 41:5526-65. [PMID: 22684046 DOI: 10.1039/c2cs35066a] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | | | | | | | | |
Collapse
|
22
|
Wu M, Higgs PG. Comparison of the roles of nucleotide synthesis, polymerization, and recombination in the origin of autocatalytic sets of RNAs. ASTROBIOLOGY 2011; 11:895-906. [PMID: 22059642 DOI: 10.1089/ast.2011.0679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ribozymes that act as polymerases and nucleotide synthases are known experimentally, even though no fully self-replicating system has yet been found. If the RNA World hypothesis is true, ribozymes must have arisen initially from within a random abiotic polymerization system. To investigate the origin of the RNA world, we studied a mathematical model of a chemical reaction system describing RNA polymerization. It is supposed that, in absence of ribozymes, polymerization occurs at a small spontaneous rate, and that in the presence of polymerase ribozymes, polymerization occurs at a faster rate that is proportional to the ribozyme concentration. Chains must be longer than a minimum threshold length in order to have the possibility of acting as ribozymes. The reaction system has two stable states that we term dead and living. The dead state is controlled by the small spontaneous rate and has negligible concentration of ribozymes. The living state has high concentration of ribozymes, and the reaction rates are determined by the ribozymes; thus, the system is autocatalytic. Concentration fluctuations in a finite volume can cause a transition to occur from the dead to the living state, that is, an origin of life occurs within this model. We also consider ribozymes that catalyze nucleotide synthesis. We show that living and dead states arise in the presence of synthase ribozymes in the same way as for polymerases. It has been proposed that recombination reactions are a way of generating long RNA chains in the early stages of life. We show that if the possibility of random reversible recombination reactions is added to our model, this does not lead to an increase in long polymer concentration. Thus, if recombination is fully reversible, there is no autocatalytic state controlled by recombination. Nevertheless, recombination can play an important role in ribozyme synthesis if there is an additional process that keeps the recombination reactions out of equilibrium. We modeled a case studied experimentally in which building block strands of moderate length associate due to RNA secondary structure formation. A recombination reaction then occurs between these strands to form a longer sequence that catalyzes its own formation via the recombination reaction. This system has an autocatalytic state, and it is possible for it to arise within our random polymerization system. If complexes formed by associations of shorter strands can act as catalysts without the requirement that the strands be covalently linked, this would alleviate the need for synthesis of very long strands; hence, it makes the emergence of an autocatalytic system from an abiotic random polymerization system much more likely.
Collapse
Affiliation(s)
- Meng Wu
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
23
|
|
24
|
Jor E, Myrmel M, Jonassen CM. SYBR Green based real-time RT-PCR assay for detection and genotype prediction of bovine noroviruses and assessment of clinical significance in Norway. J Virol Methods 2010; 169:1-7. [PMID: 20381534 PMCID: PMC7112832 DOI: 10.1016/j.jviromet.2010.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/17/2010] [Accepted: 03/30/2010] [Indexed: 11/25/2022]
Abstract
A novel SYBR Green based real-time RT-PCR assay for detection of genogroup III bovine noroviruses (BoNoV) was developed and the assay applied to 419 faecal samples from calves with and without diarrhoea. The samples were obtained from 190 Norwegian dairy and beef herds. BoNoV was detected in 49.6% of the samples from 61.1% of the herds indicating that BoNoV is ubiquitous in Norway. The overall prevalence was not significantly different in diarrhoea and non-diarrhoea samples. Analyses of polymerase gene sequences revealed both genotype III/1 and III/2 with genotype III/2 (Newbury2-like) being the most prevalent. Detected capsid sequences were restricted to Newbury2-like and the chimeric Bo/Thirsk10/00/UK strain. The RNA polymerase genotypes of the circulating BoNoVs in Norway were predicted by melting temperature analysis. Additional data from a challenge experiment suggest that a high proportion of young calves are shedding low levels of BoNoV for a prolonged time after recovering from the associated diarrhoea. The findings may explain some of the discrepancies in detection rates from previous studies and explain why some studies have failed to detect significant prevalence differences between calves with and without diarrhoea. It may also shed new light on some epidemiological aspects of norovirus infections.
Collapse
Affiliation(s)
- Evert Jor
- Department of Animal Health, National Veterinary Institute, PO Box 750, Sentrum, NO-0106 Oslo, Norway.
| | | | | |
Collapse
|
25
|
Mulkidjanian AY. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 2009; 4:26. [PMID: 19703272 PMCID: PMC3152778 DOI: 10.1186/1745-6150-4-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/24/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints. RESULTS This work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS) similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1) used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2) served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3) prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. In addition, the UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27). CONCLUSION The suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing ZnS edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms.
Collapse
|
26
|
Nechaev SY, Lutay AV, Vlassov VV, Zenkova MA. Non-enzymatic template-directed recombination of RNAs. Int J Mol Sci 2009; 10:1788-1807. [PMID: 19468339 PMCID: PMC2680647 DOI: 10.3390/ijms10041788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/10/2009] [Accepted: 04/15/2009] [Indexed: 12/27/2022] Open
Abstract
RNA non-enzymatic recombination reactions are of great interest within the hypothesis of the “RNA world”, which argues that at some stage of prebiotic life development proteins were not yet engaged in biochemical reactions and RNA carried out both the information storage task and the full range of catalytic roles necessary in primitive self-replicating systems. Here we report on the study of recombination reaction occuring between two 96 nucleotides (nts) fragments of RNAs under physiological conditions and governed by a short oligodeoxyribonucleotide template, partially complementary to sequences within each of the RNAs. Analysis of recombination products shows that ligation is predominantly template-directed, and occurs within the complementary complex with the template in “butt-to-butt” manner, in 1- or 3- nts bulges or in 2–3 nts internal loops. Minor recombination products formed in the template-independent manner are detected as well.
Collapse
Affiliation(s)
- Sergey Y. Nechaev
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +7-383-333-3761; Fax: +7-383-333-3677
| | | | | | | |
Collapse
|
27
|
Lehman N. A recombination-based model for the origin and early evolution of genetic information. Chem Biodivers 2008; 5:1707-17. [PMID: 18816523 DOI: 10.1002/cbdv.200890159] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recombination is the exchange of groups of subunits between two entities. It is argued here that this process was central to the origin of life, because it allowed for the creation of useful information from a random pool of linear polymers. The length distribution of such a pool could be broadened if these polymers, such as RNA strands, have the capability of interacting and performing a cross-strand nucleophilic attack of a hydroxy group on a phosphate. Both the formation of stable secondary structures such as stem-loops and selection for self-replication can operate to push the equilibrium length distribution of the pool to longer and more catalytically proficient oligomers. There is empirical and theoretical support for these operations. Finally, in a collection of recombining linear oligomers, the advent of short recognition sequences that favor certain interactions over others, the property of a genotypic 'self' could develop, which later can shed its collective nature and be subject to Darwinian evolution. This could have given rise to true replicase enzymes, for example.
Collapse
Affiliation(s)
- Niles Lehman
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA.
| |
Collapse
|
28
|
Draper WE, Hayden EJ, Lehman N. Mechanisms of covalent self-assembly of the Azoarcus ribozyme from four fragment oligonucleotides. Nucleic Acids Res 2007; 36:520-31. [PMID: 18048415 PMCID: PMC2241849 DOI: 10.1093/nar/gkm1055] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA oligomers of length 40-60 nt can self-assemble into covalent versions of the Azoarcus group I intron ribozyme. This process requires a series of recombination reactions in which the internal guide sequence of a nascent catalytic complex makes specific interactions with a complement triplet, CAU, in the oligomers. However, if the CAU were mutated, promiscuous self-assembly may be possible, lessening the dependence on a particular set of oligomer sequences. Here, we assayed whether oligomers containing mutations in the CAU triplet could still self-construct Azoarcus ribozymes. The mutations CAC, CAG, CUU and GAU all inhibited self-assembly to some degree, but did not block it completely in 100 mM MgCl(2). Oligomers containing the CAC mutation retained the most self-assembly activity, while those containing GAU retained the least, indicating that mutations more 5' in this triplet are the most deleterious. Self-assembly systems containing additional mutant locations were progressively less functional. Analyses of properly self-assembled ribozymes revealed that, of two recombination mechanisms possible for self-assembly, termed 'tF2' and 'R2F2', the simpler one-step 'tF2' mechanism is utilized when mutations exist. These data suggest that self-assembling systems are more facile than previously believed, and have relevance to the origin of complex ribozymes during the RNA World.
Collapse
Affiliation(s)
- Will E Draper
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA
| | | | | |
Collapse
|