1
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024:10.1038/s41570-024-00648-5. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
2
|
Humboldt A, Rami F, Topp FM, Arnold D, Göhringer D, Pallan PS, Egli M, Richert C. Prolinyl Phosphoramidates of Nucleotides with Increased Reactivity. Angew Chem Int Ed Engl 2024; 63:e202319958. [PMID: 38300702 DOI: 10.1002/anie.202319958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Nucleoside monophosphates (NMPs) are the subunits of RNA. They are incorporated into growing complementary strands when sequences are copied in enzyme-free reactions using organic leaving groups at the phosphates. Amino acids are rarely considered as leaving groups, but proline can act as a leaving group when N-linked to NMPs, so that prolinyl NMPs hydrolyze in aqueous buffer at 37 °C, with half-life times as short as 2.4 h, and they act as monomers in enzyme-free primer extension. Still, their level of reactivity is insufficient for practical purposes, requiring months for some extensions. Herein we report the synthesis of eight substituted prolinyl AMPs together with seven related compounds and the results of a study of their reactivity. A δ-carboxy prolinyl NMP was found to be converted with a half-life time of just 11 min in magnesium-free buffer, and a δ-isopropyl prolinyl NMP was shown to react sevenfold faster than its prolinyl counterpart in enzyme-free genetic copying of RNA. Our results indicate that both anchimeric and steric effects can be employed to increase the reactivity of aminoacidyl nucleotides, i.e. compounds that combine two fundamental classes of biomolecules in one functional entity.
Collapse
Affiliation(s)
- Adrian Humboldt
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Fabian Rami
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Franka M Topp
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Dejana Arnold
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Daniela Göhringer
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee, 37232, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee, 37232, USA
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Han J, Kervio E, Richert C. High Fidelity Enzyme-Free Primer Extension with an Ethynylpyridone Thymidine Analog. Chemistry 2021; 27:15918-15921. [PMID: 34559417 PMCID: PMC9293356 DOI: 10.1002/chem.202102996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
High fidelity base pairing is important for the transmission of genetic information. Weak base pairs can lower fidelity, complicating sequencing, amplification and replication of DNA. Thymidine 5'-monophosphate (TMP) is the most weakly pairing nucleotide among the canonical deoxynucleotides, causing high errors rates in enzyme-free primer extension. Here we report the synthesis of an ethynylpyridone C-nucleoside analog of 3'-amino-2',3'-dideoxythymidine monophosphate and its incorporation in a growing strand by enzyme-free primer extension. The ethynylpyridone C-nucleotide accelerates extension more than five-fold, reduces misincorporation and readily displaces TMP in competition experiments. The results bode well for the use of the C-nucleoside as replacements for thymidine in practical applications.
Collapse
Affiliation(s)
- Jianyang Han
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Eric Kervio
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
4
|
Räuchle M, Leveau G, Richert C. Synthesis of Peptido RNAs from Unprotected Peptides and Oligoribonucleotides via Coupling in Aqueous Solution. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maximilian Räuchle
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Gabrielle Leveau
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Clemens Richert
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
5
|
Motsch S, Pfeffer D, Richert C. 2'/3' Regioselectivity of Enzyme-Free Copying of RNA Detected by NMR. Chembiochem 2020; 21:2013-2018. [PMID: 32017335 PMCID: PMC7497262 DOI: 10.1002/cbic.202000014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 11/06/2022]
Abstract
The RNA-templated extension of oligoribonucleotides by nucleotides produces either a 3',5' or a 2',5'-phosphodiester. Nature controls the regioselectivity during RNA chain growth with polymerases, but enzyme-free versions of genetic copying have modest specificity. Thus far, enzymatic degradation of products, combined with chromatography or electrophoresis, has been the preferred mode of detecting 2',5'-diesters produced in enzyme-free reactions. This approach hinges on the substrate specificity of nucleases, and is not suitable for in situ monitoring. Here we report how 1 H NMR spectroscopy can be used to detect the extension of self-templating RNA hairpins and that this reveals the regioisomeric nature of the newly formed phosphodiesters. We studied several modes of activating nucleotides, including imidazolides, a pyridinium phosphate, an active ester, and in situ activation with carbodiimide and organocatalyst. Conversion into the desired extension product ranged from 20 to 90 %, depending on the leaving group. Integration of the resonances of H1' protons of riboses and H5 protons of pyrimidines gave regioselectivities ranging from 40:60 to 85:15 (3',5' to 2',5' diester), but no simple correlation between 3',5' selectivity and yield. Our results show how monitoring with a high-resolution technique sheds a new light on a process that may have played an important role during the emergence of life.
Collapse
Affiliation(s)
- Sebastian Motsch
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Pfeffer
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Sosson M, Richert C. Enzyme-free genetic copying of DNA and RNA sequences. Beilstein J Org Chem 2018; 14:603-617. [PMID: 29623122 PMCID: PMC5870163 DOI: 10.3762/bjoc.14.47] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
The copying of short DNA or RNA sequences in the absence of enzymes is a fascinating reaction that has been studied in the context of prebiotic chemistry. It involves the incorporation of nucleotides at the terminus of a primer and is directed by base pairing. The reaction occurs in aqueous medium and leads to phosphodiester formation after attack of a nucleophilic group of the primer. Two aspects of this reaction will be discussed in this review. One is the activation of the phosphate that drives what is otherwise an endergonic reaction. The other is the improved mechanistic understanding of enzyme-free primer extension that has led to a quantitative kinetic model predicting the yield of the reaction over the time course of an assay. For a successful modeling of the reaction, the strength of the template effect, the inhibitory effect of spent monomers, and the rate constants of the chemical steps have to be determined experimentally. While challenges remain for the high fidelity copying of long stretches of DNA or RNA, the available data suggest that enzyme-free primer extension is a more powerful reaction than previously thought.
Collapse
Affiliation(s)
- Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Life (Basel) 2016; 6:life6040040. [PMID: 27827919 PMCID: PMC5198075 DOI: 10.3390/life6040040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks.
Collapse
|
8
|
Göckel A, Richert C. Synthesis of an oligonucleotide with a nicotinamide mononucleotide residue and its molecular recognition in DNA helices. Org Biomol Chem 2016; 13:10303-9. [PMID: 26371420 DOI: 10.1039/c5ob01714a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal redox cofactor of primary metabolism. Its redox reactivity is based on the nicotinamide mononucleotide (NMN) moiety. We investigated whether NMN(+) can engage in pairing interactions, when incorporated into an oligonucleotide. Here we describe the incorporation of NMN(+) at the 3'-terminus of an oligodeoxynucleotide via a phosphoramidate coupling in solution. The stability of duplexes and triplexes with the NMN(+)-containing strand was measured in UV-melting curves. While the melting points of duplexes with different bases facing the nicotinamide were similar, triplex stabilities varied greatly between different base combinations, suggesting specific pairing. The most stable triplexes were found when a guanine and an adenine were facing the NMN(+) residue. Their triplex melting points were higher than those of the corresponding triplexes with a thymidine residue at the same position. These results show that NMN(+) residues can be recognized selectively in DNA helices and are thus compatible with the molecular recognition in nucleic acids.
Collapse
Affiliation(s)
- A Göckel
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| | | |
Collapse
|
9
|
Kervio E, Sosson M, Richert C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res 2016; 44:5504-14. [PMID: 27235418 PMCID: PMC4937335 DOI: 10.1093/nar/gkw476] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/29/2023] Open
Abstract
The template-directed incorporation of nucleotides at the terminus of a growing primer is the basis of the transmission of genetic information. Nature uses polymerases-catalyzed reactions, but enzyme-free versions exist that employ nucleotides with organic leaving groups. The leaving group affects yields, but it was not clear whether inefficient extensions are due to poor binding, low reactivity toward the primer, or rapid hydrolysis. We have measured the binding of a total of 15 different activated nucleotides to DNA or RNA sequences. Further, we determined rate constants for the chemical step of primer extension involving methylimidazolides or oxyazabenzotriazolides of deoxynucleotides or ribonucleotides. Binding constants range from 10 to >500 mM and rate constants from 0.1 to 370 M(-1) h(-1) For aminoterminal primers, a fast covalent step and slow hydrolysis are the main factors leading to high yields. For monomers with weakly pairing bases, the leaving group can improve binding significantly. A detailed mechanistic picture emerges that explains why some enzyme-free primer extensions occur in high yield, while others remain recalcitrant to copying without enzymatic catalysis. A combination of tight binding and rapid extension, coupled with slow hydrolysis induces efficient enzyme-free copying.
Collapse
Affiliation(s)
- Eric Kervio
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Jauker M, Griesser H, Richert C. Copying of RNA Sequences without Pre-Activation. Angew Chem Int Ed Engl 2015; 54:14559-63. [PMID: 26435291 PMCID: PMC4678514 DOI: 10.1002/anie.201506592] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/03/2015] [Indexed: 11/23/2022]
Abstract
Template-directed incorporation of nucleotides at the terminus of a growing complementary strand is the basis of replication. For RNA, this process can occur in the absence of enzymes, if the ribonucleotides are first converted to an active species with a leaving group. Thus far, the activation required a separate chemical step, complicating prebiotically plausible scenarios. Here we show that a combination of a carbodiimide and an organocatalyst induces near-quantitative incorporation of any of the four ribonucleotides. Upon in situ activation, adenosine monophosphate was found to also form oligomers in aqueous solution. So, both de novo strand formation and sequence-specific copying can occur without an artificial synthetic step.
Collapse
Affiliation(s)
- Mario Jauker
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | - Helmut Griesser
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany)
| | - Clemens Richert
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany).
| |
Collapse
|
11
|
Effect of Co-solutes on Template-Directed Nonenzymatic Replication of Nucleic Acids. J Mol Evol 2015; 81:72-80. [DOI: 10.1007/s00239-015-9700-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
|
12
|
Jauker M, Griesser H, Richert C. Kopieren von RNA-Sequenzen ohne Voraktivierung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Synergism and mutualism in non-enzymatic RNA polymerization. Life (Basel) 2014; 4:598-620. [PMID: 25370531 PMCID: PMC4284460 DOI: 10.3390/life4040598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/19/2023] Open
Abstract
The link between non-enzymatic RNA polymerization and RNA self-replication is a key step towards the "RNA world" and still far from being solved, despite extensive research. Clay minerals, lipids and, more recently, peptides were found to catalyze the non-enzymatic synthesis of RNA oligomers. Herein, a review of the main models for the formation of the first RNA polymers is presented in such a way as to emphasize the cooperation between life's building blocks in their emergence and evolution. A logical outcome of the previous results is a combination of these models, in which RNA polymerization might have been catalyzed cooperatively by clays, lipids and peptides in one multi-component prebiotic soup. The resulting RNAs and oligopeptides might have mutualistically evolved towards functional RNAs and catalytic peptides, preceding the first RNA replication, thus supporting an RNA-peptide world. The investigation of such a system is a formidable challenge, given its complexity deriving from a tremendously large number of reactants and innumerable products. A rudimentary experimental design is outlined, which could be used in an initial attempt to study a quaternary component system.
Collapse
|
14
|
Kervio E, Claasen B, Steiner UE, Richert C. The strength of the template effect attracting nucleotides to naked DNA. Nucleic Acids Res 2014; 42:7409-20. [PMID: 24875480 PMCID: PMC4066754 DOI: 10.1093/nar/gku314] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of genetic information relies on Watson–Crick base pairing between nucleoside phosphates and template bases in template–primer complexes. Enzyme-free primer extension is the purest form of the transmission process, without any chaperon-like effect of polymerases. This simple form of copying of sequences is intimately linked to the origin of life and provides new opportunities for reading genetic information. Here, we report the dissociation constants for complexes between (deoxy)nucleotides and template–primer complexes, as determined by nuclear magnetic resonance and the inhibitory effect of unactivated nucleotides on enzyme-free primer extension. Depending on the sequence context, Kd′s range from 280 mM for thymidine monophosphate binding to a terminal adenine of a hairpin to 2 mM for a deoxyguanosine monophosphate binding in the interior of a sequence with a neighboring strand. Combined with rate constants for the chemical step of extension and hydrolytic inactivation, our quantitative theory explains why some enzyme-free copying reactions are incomplete while others are not. For example, for GMP binding to ribonucleic acid, inhibition is a significant factor in low-yielding reactions, whereas for amino-terminal DNA hydrolysis of monomers is critical. Our results thus provide a quantitative basis for enzyme-free copying.
Collapse
Affiliation(s)
- Eric Kervio
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ulrich E Steiner
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Clemens Richert
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Abstract
The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems.
Collapse
Affiliation(s)
- J Craig Blain
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114; ,
| | | |
Collapse
|
16
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA mit 3′-5′-Disulfid-Verknüpfung - schnelle chemische Ligation durch isosteren Ersatz. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA with 3'-5'-disulfide links--rapid chemical ligation through isosteric replacement. Angew Chem Int Ed Engl 2014; 53:4222-6. [PMID: 24623660 DOI: 10.1002/anie.201310644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Efforts to chemically ligate oligonucleotides, without resorting to biochemical enzymes, have led to a multitude of synthetic analogues, and have extended oligomer ligation to reactions of novel oligonucleotides, peptides, and hybrids such as PNA.1 Key requirements for potential diagnostic tools not based on PCR include a fast templated chemical DNA ligation method that exhibits high pairing selectivity, and a sensitive detection method. Here we report on a solid-phase synthesis of oligonucleotides containing 5'- or 3'-mercapto-dideoxynucleotides and their chemical ligations, yielding 3'-5'-disulfide bonds as a replacement for 3'-5'-phosphodiester units. Employing a system designed for fluorescence monitoring, we demonstrate one of the fastest ligation reactions with half-lives on the order of seconds. The nontemplated ligation reaction is efficiently suppressed by the choice of DNA modification and the 3'-5' orientation of the activation site. The influence of temperature on the templated reaction is shown.
Collapse
Affiliation(s)
- Volker Patzke
- Lehrstuhl für Bioorganische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany).
| | | | | |
Collapse
|
18
|
Kaiser A, Richert C. Nucleotide-based copying of nucleic acid sequences without enzymes. J Org Chem 2013; 78:793-9. [PMID: 23327991 DOI: 10.1021/jo3025779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical primer extension is the enzyme-free incorporation of nucleotides at the end of an oligonucleotide, directed by a template. The reaction mimics the copying of sequences during replication but relies on recognition and reactivity of nucleic acids alone. Copying is low-yielding, particularly for long RNA. Hydrolysis of active esters and inhibition through hydrolysis products have been identified as factors that prevent high yields, and approaches to overcoming them have culminated in successful template-directed solid-phase syntheses for RNA and phosphoramidate DNA.
Collapse
Affiliation(s)
- Andreas Kaiser
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | | |
Collapse
|
19
|
Zhang S, Zhang N, Blain JC, Szostak JW. Synthesis of N3'-P5'-linked phosphoramidate DNA by nonenzymatic template-directed primer extension. J Am Chem Soc 2013; 135:924-32. [PMID: 23252395 PMCID: PMC3548433 DOI: 10.1021/ja311164j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
A fast and accurate pathway for nonenzymatic RNA replication
would
simplify models for the emergence of the RNA world from the prebiotic
chemistry of the early earth. However, numerous difficulties stand
in the way of an experimental demonstration of effective nonenzymatic
RNA replication. To gain insight into the necessary properties of
potentially self-replicating informational polymers, we have studied
several model systems based on amino–sugar nucleotides. Here
we describe the synthesis of N3′–P5′-linked phosphoramidate
DNA (3′-NP-DNA) by the template-directed polymerization of
activated 3′-amino-2′,3′-dideoxyribonucleotides.
3′-NP-DNA is an interesting model because of its very RNA-like
A-type duplex conformation and because activated 3′-amino-2′,3′-dideoxyribonucleotides
are much more reactive than the corresponding activated ribonucleotides.
In contrast to our previous studies with 2′-amino-2′,3′-dideoxyribonucleotides
(for which G and C but not A and T exhibit efficient template copying),
we have found that all four canonical 3′-amino-2′,3′-dideoxyribonucleotides
(G, C, A, and T) polymerize efficiently on RNA templates. RNA templates
are generally superior to DNA templates, and oligo-ribo-T templates
are superior to oligo-ribo-U templates, which are the least efficient
of the RNA homopolymer templates. We have also found that activation
of 3′-aminonucleotides with 2-methylimidazole results in a
ca. 10-fold higher polymerization rate relative to activation with
imidazole, an observation that parallels earlier findings with ribonucleotides.
We discuss the implications of our experiments for the possibility
of self-replication in the 3′-NP-DNA and RNA systems.
Collapse
Affiliation(s)
- Shenglong Zhang
- Howard Hughes Medical Institute and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
20
|
Vogel H, Richert C. Labeling Small RNAs through Chemical Ligation at the 5′ Terminus: Enzyme-Free or Combined with Enzymatic 3′-Labeling. Chembiochem 2012; 13:1474-82. [DOI: 10.1002/cbic.201200214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Indexed: 01/01/2023]
|
21
|
Benner SA, Kim HJ, Yang Z. Setting the stage: the history, chemistry, and geobiology behind RNA. Cold Spring Harb Perspect Biol 2012; 4:a003541. [PMID: 20880988 DOI: 10.1101/cshperspect.a003541] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
No community-accepted scientific methods are available today to guide studies on what role RNA played in the origin and early evolution of life on Earth. Further, a definition-theory for life is needed to develop hypotheses relating to the "RNA First" model for the origin of life. Four approaches are currently at various stages of development of such a definition-theory to guide these studies. These are (a) paleogenetics, in which inferences about the structure of past life are drawn from the structure of present life; (b) prebiotic chemistry, in which hypotheses with experimental support are sought that get RNA from organic and inorganic species possibly present on early Earth; (c) exploration, hoping to encounter life independent of terran life, which might contain RNA; and (d) synthetic biology, in which laboratories attempt to reproduce biological behavior with unnatural chemical systems.
Collapse
Affiliation(s)
- Steven A Benner
- Foundation for Applied Molecular Evolution, Gainesville, Florida 32601, USA.
| | | | | |
Collapse
|
22
|
Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res 2011; 39:8135-47. [PMID: 21724606 PMCID: PMC3185426 DOI: 10.1093/nar/gkr525] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/13/2022] Open
Abstract
In the early 'RNA world' stage of life, RNA stored genetic information and catalyzed chemical reactions. However, the RNA world eventually gave rise to the DNA-RNA-protein world, and this transition included the 'genetic takeover' of information storage by DNA. We investigated evolutionary advantages for using DNA as the genetic material. The error rate of replication imposes a fundamental limit on the amount of information that can be stored in the genome, as mutations degrade information. We compared misincorporation rates of RNA and DNA in experimental non-enzymatic polymerization and calculated the lowest possible error rates from a thermodynamic model. Both analyses found that RNA replication was intrinsically error-prone compared to DNA, suggesting that total genomic information could increase after the transition to DNA. Analysis of the transitional RNA/DNA hybrid duplexes showed that copying RNA into DNA had similar fidelity to RNA replication, so information could be maintained during the genetic takeover. However, copying DNA into RNA was very error-prone, suggesting that attempts to return to the RNA world would result in a considerable loss of information. Therefore, the genetic takeover may have been driven by a combination of increased chemical stability, increased genome size and irreversibility.
Collapse
Affiliation(s)
- Kevin Leu
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Benedikt Obermayer
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Sudha Rajamani
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Ulrich Gerland
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Irene A. Chen
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
23
|
Röthlingshöfer M, Richert C. Chemical primer extension at submillimolar concentration of deoxynucleotides. J Org Chem 2010; 75:3945-52. [PMID: 20364862 DOI: 10.1021/jo1002467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Template-directed primer extension usually requires a polymerase, nucleoside triphosphates, and magnesium ions as cofactors. Enzyme-free, chemical primer extensions are known for preactivated nucleotides at millimolar concentrations. Based on a screen of carbodiimides, heterocyclic catalysts, and reactions conditions, we now show that near-quantitative primer conversion can be achieved at submillimolar concentration of any of the four deoxynucleotides (dAMP, dCMP, dGMP and dTMP). The new protocol relies on in situ activation with EDC and 1-methylimidazole and a magnesium-free buffer that was tested successfully for different sequence motifs. The method greatly simplifies chemical primer extension assays, further reduces the cost of such assays, and demonstrates the potential of the in situ activation approach.
Collapse
Affiliation(s)
- Manuel Röthlingshöfer
- Institute for Organic Chemistry, University of Karlsruhe/K.I.T., 76131 Karlsruhe, Germany
| | | |
Collapse
|
24
|
Gießler K, Griesser H, Göhringer D, Sabirov T, Richert C. Synthesis of 3′-BODIPY-Labeled Active Esters of Nucleotides and a Chemical Primer Extension Assay on Beads. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Rajamani S, Ichida JK, Antal T, Treco DA, Leu K, Nowak MA, Szostak JW, Chen IA. Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication. J Am Chem Soc 2010; 132:5880-5. [PMID: 20359213 PMCID: PMC2857888 DOI: 10.1021/ja100780p] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 11/28/2022]
Abstract
The frequency of errors during genome replication limits the amount of functionally important information that can be passed on from generation to generation. During the origin of life, mutation rates are thought to have been quite high, raising a classic chicken-and-egg paradox: could nonenzymatic replication propagate sequences accurately enough to allow for the emergence of heritable function? Here we show that the theoretical limit on genomic information content may increase substantially as a consequence of dramatically slowed polymerization after mismatches. As a result of postmismatch stalling, accurate copies of a template tend to be completed more rapidly than mutant copies and the accurate copies can therefore begin a second round of replication more quickly. To quantify this effect, we characterized an experimental model of nonenzymatic, template-directed nucleic acid polymerization. We found that most mismatches decrease the rate of primer extension by more than 2 orders of magnitude relative to a matched (Watson-Crick) control. A chemical replication system with this property would be able to propagate sequences long enough to have function. Our study suggests that the emergence of functional sequences during the origin of life would be possible even in the face of the high intrinsic error rates of chemical replication.
Collapse
|
26
|
Eisenhuth R, Richert C. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers. J Org Chem 2009; 74:26-37. [PMID: 19053612 DOI: 10.1021/jo8018889] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5'-Protected 3'-amino-2',3'-dideoxynucleosides containing any of the four canonical nucleobases (A/C/G/T) were prepared via azides in five to six steps, starting from deoxynucleosides. For pyrimidines, the synthetic route involved nucleophilic opening of anhydronucleosides. For purines, an in situ oxidation/reduction sequence, followed by a Mitsunobu reaction with diphenyl-2-pyridylphosphine and sodium azide, provided the 3'-azidonucleosides in high yield and purity. For solid-phase synthesis of aminoterminal oligonucleotides, aminonucleosides were linked to controlled pore glass through a novel hexafluoroglutaric acid linker. These supports gave 3'-aminoterminal primers in high yield and purity via conventional DNA chain assembly and one-step deprotection/release with aqueous ammonia. Primers thus prepared were successfully tested in enzyme-free chemical primer extension, an inexpensive methodology for genotyping and labeling. Protected 5'-monophosphates of 3'-amino-2',3'-dideoxynucleosides were also prepared, providing starting materials for the preparation of labeled or photolably protected monomers for chemical primer extension.
Collapse
Affiliation(s)
- Ralf Eisenhuth
- Institute for Organic Chemistry, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | |
Collapse
|
27
|
Röthlingshöfer M, Kervio E, Lommel T, Plutowski U, Hochgesand A, Richert C. Chemical primer extension in seconds. Angew Chem Int Ed Engl 2008; 47:6065-8. [PMID: 18613189 DOI: 10.1002/anie.200801260] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manuel Röthlingshöfer
- Institut für Organische Chemie, Universität Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Röthlingshöfer M, Kervio E, Lommel T, Plutowski U, Hochgesand A, Richert C. Chemical Primer Extension in Seconds. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|