1
|
Peterse E, Meeuwenoord N, van den Elst H, van der Marel GA, Overkleeft HS, Filippov D. Solid‐phase synthesis of macrocyclic peptides via side‐chain anchoring of the ornithine δ‐amine. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Evert Peterse
- Leiden University Leiden Institute of Chemistry NETHERLANDS
| | | | | | | | | | - Dmitri Filippov
- Leiden Institute of Chemstry Bio-organic Synthesis Einsteinweg 55 2333 CC Leiden Leiden NETHERLANDS
| |
Collapse
|
2
|
Vaca J, Ortiz A, Sansinenea E. Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies. Curr Med Chem 2021; 29:2093-2108. [PMID: 34047258 DOI: 10.2174/0929867328666210527093041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, antibiotic-resistant pathogenic bacteria are emerging as an important health problem worldwide. The search for new compounds with antibiotic characteristics is the most promising alternative. Bacteriocins are natural compounds that are inhibitory against pathogens, and Bacillus species are the major producers of these compounds, which have shown antimicrobial activity against clinically important bacteria. These peptides not only have potential in the pharmaceutical industry but also in food and agricultural sectors. OBJECTIVE We provide an overview of the recent bacteriocins isolated from different species of Bacillus including their applications and the older bacteriocins. RESULTS In this review, we have revised some works about the improvements carried out in the production of bacteriocins. CONCLUSION These applications make bacteriocins very promising compounds that need to study for industrial production.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| |
Collapse
|
3
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
4
|
Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol 2018; 34:57. [DOI: 10.1007/s11274-018-2437-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
5
|
Elsawy MA, Martin L, Tikhonova IG, Walker B. Solid phase synthesis of Smac/DIABLO-derived peptides using a ‘Safety-Catch’ resin: Identification of potent XIAP BIR3 antagonists. Bioorg Med Chem 2013; 21:5004-11. [DOI: 10.1016/j.bmc.2013.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
6
|
|
7
|
Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW, Leong SSJ, Chan-Park MB. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides. Biomacromolecules 2010; 11:60-7. [PMID: 19957992 DOI: 10.1021/bm900896h] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs), particularly those effective against methicillin-resistant Staphylococcus aureus ( S. aureus ) and antibiotic-resistant Pseudomonas aeruginosa ( P. aeruginosa ), are important alternatives to antibiotics. Typical peptide synthesis methods involving solid-phase sequential synthesis are slow and costly, which are obstacles to their more widespread application. In this paper, we synthesize peptides via ring-opening polymerization of alpha-amino acid N-carboxyanhydrides (NCA) using a transition metal initiator. This method offers high potential for inexpensive synthesis of substantial quantities of AMPs. Lysine (K) was chosen as the hydrophilic amino acid and alanine (A), phenylalanine (F), and leucine (L) as the hydrophobic amino acids. We synthesized five series of AMPs (i.e., P(KA), P(KL), P(KF), P(KAL), and P(KFL)), varied the hydrophobic amino acid content from 0 to 100%, and determined minimal inhibitory concentrations (MICs) against clinically important Gram-negative and Gram-positive bacteria and fungi (i.e., Escherichia coli ( E. coli ), P. aeruginosa , Serratia marcescens ( S. marcescens ), and Candida albicans ( C. albicans ). We found that P(K(10)F(7.5)L(7.5)) and P(K(10)F(15)) show the broadest activity against all five pathogens and have the lowest MICs against these pathogens. For P(K(10)F(7.5)L(7.5)), the MICs against E. coli , P. aeruginosa , S. marcescens , S. aureus , and C. albicans are 31 microg/mL, 31 microg/mL, 250 microg/mL, 31 microg/mL, and 62.5 microg/mL, while for P(K(10)F(15)) the respective MICs are 31 microg/mL, 31 microg/mL, 250 microg/mL, 31 microg/mL, and 125 microg/mL. These are lower than the MICs of many naturally occurring AMPs. The membrane depolarization and SEM assays confirm that the mechanism of microbe killing by P(K(10)F(7.5)L(7.5)) copeptide includes membrane disruption, which is likely to inhibit rapid induction of AMP-resistance in pathogens.
Collapse
Affiliation(s)
- Chuncai Zhou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lienkamp K, Tew GN. Synthetic mimics of antimicrobial peptides--a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chemistry 2010; 15:11784-800. [PMID: 19798714 DOI: 10.1002/chem.200900049] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural macromolecules exhibit an extensive arsenal of properties, many of which have proven difficult to recapitulate in simpler synthetic systems. Over the last couple of years, foldamers have emerged as one important step toward increased functionality in synthetic systems. While the great majority of work in this area has focused on folded structures, hence the name, more recent progress has centered on polymers that mimic protein function. These efforts have resulted in the design of relatively simple macromolecules; one example are the synthetic mimics of antimicrobial peptides (SMAMPs) that capture the central physicochemical features of their natural archetypes irrespective of the specific folded form. Here we present our recent efforts to create polymers which display biological activity similar to natural proteins, including antimicrobial and cell-penetrating peptides.
Collapse
Affiliation(s)
- Karen Lienkamp
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
9
|
Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides. POLYMER COMPOSITES – POLYOLEFIN FRACTIONATION – POLYMERIC PEPTIDOMIMETICS – COLLAGENS 2010. [DOI: 10.1007/12_2010_85] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Abstract
An overview of marine natural products synthesis during 2007 is provided. As with earlier installments in this series, the emphasis is on total syntheses of molecules of contemporary interest, new total syntheses, and syntheses that have resulted in structure confirmation or stereochemical assignments.1 Introduction, 2 Review articles, 3 Azaspiracid, 4 Polyethers, 5 Guanidinium alkaloids, 6 Amphidinolides, 7 Total syntheses of other compounds, 8 Acknowledgements, 9 References.
Collapse
Affiliation(s)
- Jonathan C Morris
- School of Chemistry and Physics, University of Adelaide, Adelaide, Australia5005
| | | |
Collapse
|
12
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|