1
|
Thepmalee C, Khoothiam K, Thatsanasuwan N, Rongjumnong A, Suwannasom N, Thephinlap C, Nuntaboon P, Panya A, Chumphukam O, Chokchaisiri R. Comprehensive phytochemical profiling and biological activities of Hodgsonia heteroclita subsp. indochinensis seed extracts. Heliyon 2024; 10:e36686. [PMID: 39286088 PMCID: PMC11402745 DOI: 10.1016/j.heliyon.2024.e36686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hodgsonia heteroclita subsp. indochinensis, a member of the Cucurbitaceae family, is utilized in traditional medicinal remedies based on indigenous wisdom. This study aimed to comprehensively identify and analyze the bioactive phytoconstituents within H. heteroclita subsp. indochinensis seeds. Seeds were sequentially extracted with n-hexane, ethyl acetate, and methanol. Liquid chromatography-mass spectrometry analysis detected ferulic acid, salicylic acid, cucurbitacin E, stigmasterol glucoside, and β-sitosterol glucoside in all extracts. The total phenolic content in the HH(S)-EtOAc and HH(S)-MeOH was 14.22 ± 1.58 and 12.98 ± 1.03 mg gallic acid equivalent/g, respectively. Consequently, the HH(S)-EtOAc demonstrated antioxidant activity with an IC50 of 1.10 ± 0.28 mg/mL, while the HH(S)-MeOH displayed strong antioxidant potential with an IC50 of 0.04 ± 0.00 mg/mL according to an ABTS assay. Antibacterial evaluations of both the HH(S)-hexane and HH(S)-EtOAc revealed significant activity against Staphylococcus aureus (zone of inhibition (ZOI): 13.67 ± 2.31 and 11.67 ± 1.53 mm, respectively) but limited activity against Escherichia coli (ZOI: 7.33 ± 0.58 and 7.67 ± 0.58 mm, respectively). Additionally, the extracts exhibited low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, ranging from 62.50 to 250 mg/mL. The antiproliferative activity of seed extracts was assessed against two breast cancer cell lines (MCF-7 and MDA-MB-231), normal breast cells (MCF10A), and human embryonic kidney (HEK) 293T cells, through MTT and clonogenic assays. The results revealed IC50 values exceeding 400 μg/mL, indicating that the extracts are safe. Furthermore, all seed extracts (50 μg/mL) exhibited potent anti-inflammatory activity, evident by their substantial inhibition of nitric oxide production (p < 0.001) and inducible nitric oxide synthase (iNOS) gene expression (p < 0.05) in LPS-induced RAW264.7. These findings demonstrate the potential for H. heteroclita subsp. indochinensis seed extracts in the development of functional foods, nutraceuticals, and dietary supplements due to their diverse bioactive compounds and substantial biological activities, particularly their anti-inflammatory effects.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Krissana Khoothiam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Natthaphon Thatsanasuwan
- Division of Nutrition and Dietetics, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Artitaya Rongjumnong
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Nittiya Suwannasom
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chonthida Thephinlap
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Orada Chumphukam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, 56000, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | | |
Collapse
|
2
|
Shao H, Li Y, Wu C, Chen R, Kang J. Triterpenes from antler-shaped fruiting body of Ganoderma lucidum and their hepatoprotective activities. PHYTOCHEMISTRY 2024; 224:114148. [PMID: 38763311 DOI: 10.1016/j.phytochem.2024.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 μM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.
Collapse
Affiliation(s)
- Hongjie Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co. Ltd, 6 Chuangxin Road, High-Tech Zone, Fuzhou, 350108, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co. Ltd, 6 Chuangxin Road, High-Tech Zone, Fuzhou, 350108, China
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing, 100050, China.
| |
Collapse
|
3
|
Zhong J, Cui J, Miao M, Hu F, Dong J, Liu J, Zhong C, Cheng J, Hu K. A point mutation in MC06g1112 encoding FLOWERING LOCUS T decreases the first flower node in bitter gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1153208. [PMID: 37881613 PMCID: PMC10595031 DOI: 10.3389/fpls.2023.1153208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
In Cucurbitaceae crops, the first flower node (FFN) is an important agronomic trait which can impact the onset of maturity, the production of female flowers, and yield. However, the gene responsible for regulating FFN in bitter gourd is unknown. Here, we used a gynoecious line (S156G) with low FFN as the female parent and a monoecious line (K8-201) with high FFN as the male parent to obtain F1 and F2 generations. Genetic analysis indicated that the low FFN trait was incompletely dominant over the high FFN trait. A major quantitative trait locus (QTL)-Mcffn and four minor effect QTLs-Mcffn1.1, Mcffn1.2, Mcffn1.3, and Mcffn1.4 were detected by whole-genome re-sequencing-based QTL mapping in the S156G×K8-201 F2 population (n=234) cultivated in autumn 2019. The Mcffn locus was further supported by molecular marker-based QTL mapping in three S156G×K8-201 F2 populations planted in autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022 (n=205). Then, the Mcffn locus was fine-mapped into a 77.98-kb physical region on pseudochromosome MC06 using a large S156G×K8-201 F2 population (n=2,402). MC06g1112, which is a homolog of FLOWERING LOCUS T (FT), was considered as the most likely Mcffn candidate gene according to both expression and sequence variation analyses between parental lines. A point mutation (C277T) in MC06g1112, which results in a P93S amino acid mutation between parental lines, may be responsible for decreasing FFN in bitter gourd. Our findings provide a helpful resource for the molecular marker-assisted selective breeding of bitter gourd.
Collapse
Affiliation(s)
- Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Junjie Cui
- Department of Horticulture, Foshan University, Foshan, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Fang Hu
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, China
| | - Jichi Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jia Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chunfeng Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Trautenmuller AL, de Almeida Soares J, Behm KC, Guimarães LMM, Xavier-Silva KR, Monteiro de Melo A, Caixeta GAB, Abadia Marciano de Paula J, Luiz Cardoso Bailão EF, Amaral VCS. Cytotoxicity and maternal toxicity attributed to exposure to Momordica charantia L. (Cucurbitaceae) dry leaf extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:36-50. [PMID: 36529899 DOI: 10.1080/15287394.2022.2157354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Momordica charantia L. (Cucurbitaceae), popularly known as "bitter melon" or "bitter gourd," is a climbing plant well-adapted to tropical countries. This plant is used traditionally to treat several conditions including diabetes mellitus, inflammation, liver dysfunctions, and cancer. Given the widespread ethnopharmacological use, this study aimed to examine the cytogenetic, maternal, and developmental toxicity attributed to exposure to dry extract of M. charantia leaves using Allium cepa and Wistar rats as test models. First, phytochemical characterization of the dry extract by high performance liquid chromatography (HPLC) analyses was performed. Then, Allium cepa roots were exposed to three different concentrations of the dry extract (0.25, 0.5, or 1 mg/ml) to determine the mitotic index, frequency of chromosomal aberrations, and nuclear abnormalities. In addition, pregnant Wistar rats were administered either 500; 1,000 or 2,000 mg/kg dry extract during the gestational period (GD) days 6-15, and subsequently possible toxic effect on the dams and fetuses were recorded. HPLC analyses confirmed rutin as the main secondary metabolite present in the dry extract. In the Allium cepa test, the dry extract was cytotoxic. In Wistar rats, dry extract administration reduced water and feed intake and mean body mass gain, indicating maternal toxicity during the organogenesis period. However, the dry extract did not markedly affect reproductive outcome parameters evaluated. Regarding developmental toxicity assessment, the dry extract treatment did not significantly alter number of skeletal malformations in the offspring. Data demonstrated that the dry extract of M. charantia leaves presents cytotoxicity and low maternal toxicity, indicating indiscriminate use needs to be avoided.
Collapse
Affiliation(s)
- Ana Luisa Trautenmuller
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Jonathan de Almeida Soares
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Kamila Campos Behm
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | | | - Anielly Monteiro de Melo
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos da Biodiversidade, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | - Joelma Abadia Marciano de Paula
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos da Biodiversidade, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | | |
Collapse
|
5
|
Kabir N, Umar IA, Dama HA, James DB, Inuwa HM. Isolation and Structural Elucidation of Novel Antidiabetic Compounds from Leaves of Momordica balsamina Linn and Leptadenia hastata (Pers) Decne. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:390-402. [PMID: 34567169 PMCID: PMC8457731 DOI: 10.22037/ijpr.2020.113632.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antihyperglycemic effect of the polyherbal combination of the leaves of Momordica balsamina Linn (MB) and Leptadenia hastata (pers) Decne (LH) have been reported in our previous study in addition to its documented dietary usages. However, the bioactive principles are yet to be fully elucidated. In the present study, bioactive antidiabetic compounds from the leaf extracts of Momordica balsamina Linn and Leptadenia hastata (pers) Decne were isolated and characterized. The plant leaves were fractionated with solvents in ascending order of polarity (hexane-chloroform-ethylacetate-methanol) using microwave assisted extraction method. The ethylacetate (MBE) and methanolic (LHM) leaf extracts of MB and LH, having the highest antihyperglycemic effects were purified by column chromatography and preparative thin layer chromatography. The antihyperglycemic activity of the isolated compounds was evaluated in streptozotocin (STZ)-induced diabetic rats and the structures of the most bioactive compounds were elucidated by 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy in comparison with reported literature. A pentacyclic triterpenoid (H3) and an isoflavone (LH2b) isolated from MBE and LHM with significant (p < 0.05) antihyperglycemic effects were identified as betulinic acid and 5-methyl genistein respectively. Our study isolated for the first time a triterpenoid and an isoflavone with potential antidiabetic effects from these indigenous antidiabetic plants. This further validates the traditional multi-therapeutic usage of the combination for the management of Diabetes Mellitus (DM) and its complications.
Collapse
Affiliation(s)
- Nafisatu Kabir
- Department of Biochemistry, Faculty of Science, Federal University Dutse, Jigawa state-Nigeria
| | - Ismail A Umar
- Department of Biochemisty, Faculty of Life Sciences, Ahmadu Bello University Zaria, Kaduna State-Nigeria
| | - Habila A Dama
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University Zaria, Kaduna State-Nigeria
| | - Dorcas B James
- Department of Biochemisty, Faculty of Life Sciences, Ahmadu Bello University Zaria, Kaduna State-Nigeria
| | - Hajiya M Inuwa
- Department of Biochemisty, Faculty of Life Sciences, Ahmadu Bello University Zaria, Kaduna State-Nigeria
| |
Collapse
|
6
|
The triterpenoids of the bitter gourd (Momordica Charantia) and their pharmacological activities: A review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
A Cucurbitane Aldehyde from the Fruit Pulp of Momordica charantia. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Du Preez CI, Gründemann C, Reinhardt JK, Mumbengegwi DR, Huber R. Immunomodulatory effects of some Namibian plants traditionally used for treating inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112683. [PMID: 32087321 DOI: 10.1016/j.jep.2020.112683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthosicyos naudininus, Gomphocarpus fruticosus, and Cryptolepis decidua are, according to the knowledge of traditional healers, used in Namibia to treat inflammatory disorders such as pain, fever and skin rashes. AIM OF THE STUDY The present study was conducted to evaluate the immunomodulatory effects and the possible underlying mechanisms of action of the plant extracts on peripheral blood mononuclear cells (PBMCs) such as T-lymphocytes. MATERIALS AND METHODS Methanolic and EtOAc extracts of A. naudinianus, G. fruticosus and C. decidua were analysed for their immunomodulatory potential. PBMCs were isolated from the blood of healthy donors and incubated with the plant extracts at concentrations 100, 30, 10, 3, 1 and 0.3 μg/mL. Effects on proliferation and viability of activated human lymphocytes were assessed in comparison to ciclosporin A by flow cytometry using carboxyfluorescein succinimidyl ester (CFSE) and WST-1 assay. Flow cytometry by annexin V/propidium iodide (PI) staining was performed to investigate the necrotic/apoptotic effect of the plant extracts on mitogen-activated human lymphocytes. In addition, analysis of the influence of plant extracts on the regulatory mechanisms of T-lymphocytes was performed using activation marker and cytokine production assays. An HPLC-PDA-ELSD-ESIMS profile was recorded for each of the extracts. RESULTS T-lymphocyte proliferation was inhibited in a dose-dependent manner by the extracts of A. naudinianus, G. fruticosus, and C. decidua in concentrations not causing apoptosis or necrosis. This effect was mediated by inhibition of lymphocyte activation, specifically the suppression of CD25 and CD69 surface receptor expression. Moreover, the extracts suppressed effector functions, as indicated by reduced production of IFN-γ and IL-2. Based on the HPLC profile, possible responsible compound classes could be identified for the extracts of A. naudinianus (cucurbitacins) and C. decidua (indole alkaloids), but not for G. fruticosus. CONCLUSIONS The data show that the extracts of A. naudinianus, G. fruticosus and C. decidua have in vitro immunomodulatory activity and they interfere with the function of immunocompetent cells, suggesting an anti-inflammatory mode-of-action. The present chemical determination and pattern recognition results explain the therapeutic potency. However, further studies to investigate the therapeutic potential of the plants in inflammatory disorders should be done.
Collapse
Affiliation(s)
- C I Du Preez
- Programme for Traditional Medicine and Drug Discovery, Multidisciplinary Research Centre, University of Namibia, 340 Mandume Ndemufayo Avenue, Pioneers Park, Windhoek, Namibia.
| | - C Gründemann
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - J K Reinhardt
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - D R Mumbengegwi
- Programme for Traditional Medicine and Drug Discovery, Multidisciplinary Research Centre, University of Namibia, 340 Mandume Ndemufayo Avenue, Pioneers Park, Windhoek, Namibia.
| | - R Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Faculty of Medicine, Breisacherstr. 115B, 79106, Freiburg, Germany.
| |
Collapse
|
9
|
Ismail Iid I, Kumar S, Shukla S, Kumar V, Sharma R. Putative antidiabetic herbal food ingredients: Nutra/functional properties, bioavailability and effect on metabolic pathways. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Shivanagoudra SR, Perera WH, Perez JL, Athrey G, Sun Y, Jayaprakasha GK, Patil BS. Cucurbitane-type compounds from Momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorg Chem 2019; 87:31-42. [PMID: 30856374 DOI: 10.1016/j.bioorg.2019.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Momordica charantia L., commonly known as bitter melon, belongs to the Cucurbitaceae family. Various in vitro and in vivo studies have indicated that extracts of bitter melons have anti-diabetic properties. However, very little is known about the specific purified compounds responsible for these antidiabetic properties. In the present study, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, charantal, charantoside XI, and 25ξ-isopropenylchole-5, 6-ene-3-O-d-glucopyranoside were isolated from bitter melon fruit. The structures of the purified compounds were elucidated by HR-ESIMS, 1D, and 2D NMR experiments. All compounds exhibited significant inhibition of α-amylase and α-glucosidase comparable to acarbose. Molecular docking studies demonstrated that purified compounds were able to bind to the active sites of proteins. Additionally, the purified compounds showed significant anti-inflammatory activity, downregulating the expression of NF-κB, iNOS, IL-6, IL-1β, TNF-α, and Cox-2 in lipopolysaccharide-activated macrophage RAW 264.7 cells. Our findings suggest that the purified compounds have potential anti-diabetic and anti-inflammatory activities and therefore hold promise for the development of plant-based management for diabetic and inflammatory conditions.
Collapse
Affiliation(s)
- Siddanagouda R Shivanagoudra
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Wilmer H Perera
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Jose L Perez
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77845, United States
| | - Yuxiang Sun
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX 77843, United States
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States.
| |
Collapse
|
11
|
Perez JL, Jayaprakasha GK, Crosby K, Patil BS. Evaluation of bitter melon (Momordica charantia) cultivars grown in Texas and levels of various phytonutrients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:379-390. [PMID: 29888551 DOI: 10.1002/jsfa.9199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the USA, Momordica charantia is relatively unknown and is usually found in specialty markets. In the present study, cultivation of five bitter melon cultivars grown under field conditions in College Station (TX, USA), was evaluated. Additionally, ascorbic acid, amino acids and phenolic compounds were quantified from various cultivars grown in different years. RESULTS The yield of the first year of evaluation was comparable to other bitter melon growing regions, ranging from 9371.5 kg ha-1 for the Japanese Spindle cultivar to 20 839.1 kg ha-1 for the Hong Kong Green cultivar. Multivariate analysis suggests a strong correlation between yield and growth degree days, water use efficiency and organic matter, as well as an inverse correlation with the amount or precipitation during the growing season. The highest levels of total ascorbic acid were shown in the Japanese Spindle cultivar (162.97 mg 100 g-1 fresh fruit), whereas the lowest levels were expressed in the Hong Kong Green cultivar (42.69 mg 100 g-1 fresh fruit). The highest levels of total phenolics were consistently found the Indian White cultivar, in the range 10.6-12.5 mg g-1 catechin equivalents. Seven phenolics and organic acids were identified and quantified by liquid chromatography-mass spectrometry and high-performance liquid chromatography, respectively. Additionally, the highest levels of total amino acids were found in the Large Top cultivar. CONCLUSION The current 3-year field study demonstrates that it is feasible to grow bitter melon commercially in Texas with proper climatic and agronomic conditions. Bitter melon is a rich source for ascorbic acid, amino acids and phenolic compounds, which makes it a valuable food source with respect to improving human health. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jose L Perez
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Kevin Crosby
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
12
|
Zhang J, Akihisa T, Kurita M, Kikuchi T, Zhu WF, Ye F, Dong ZH, Liu WY, Feng F, Xu J. Melanogenesis-Inhibitory and Cytotoxic Activities of Triterpene Glycoside Constituents from the Bark of Albizia procera. JOURNAL OF NATURAL PRODUCTS 2018; 81:2612-2620. [PMID: 30520635 DOI: 10.1021/acs.jnatprod.8b00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five oleanane-type triterpene glycosides including three new ones, proceraosides E-G (1-3), were isolated from a MeOH-soluble extract of Albizia procera bark. The structures of 1-3 were determined by use of NMR spectra, HRESIMS, and chemical methods. Compounds 1-5 exhibited inhibitory activities against the proliferation of the A549, SKBR3, AZ521, and HL60 human cancer cell lines (IC50 0.28-1.8 μM). Additionally, the apoptosis-inducing activity of compound 2 was evaluated by Hoechst 33342 staining and flow cytometry, while the effects of 2 on the activation of caspases-9, -8, and -3 in HL60 cells were revealed by Western blot analysis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , People's Republic of China
- Key Laboratory of Biomedical Functional Materials , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Toshihiro Akihisa
- College of Science and Technology , Nihon University , 1-8-14 Kanda Surugadai , Chiyoda-ku, Tokyo 101-8308 , Japan
| | - Masahiro Kurita
- College of Science and Technology , Nihon University , 1-8-14 Kanda Surugadai , Chiyoda-ku, Tokyo 101-8308 , Japan
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences , Nasahara, Takatsuki, Osaka 569-1094 , Japan
| | - Wan-Fang Zhu
- Department of Natural Medicine Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , People's Republic of China
| | - Feng Ye
- Department of Natural Medicine Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , People's Republic of China
| | - Zhen-Huan Dong
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wen-Yuan Liu
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicine Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , People's Republic of China
- Key Laboratory of Biomedical Functional Materials , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
- Jiangsu Food and Pharmaceutical Science College , Huaian , Jiangsu 223003 , People's Republic of China
| | - Jian Xu
- Department of Natural Medicine Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , People's Republic of China
| |
Collapse
|
13
|
Mozaniel SDO, Wanessa ADC, Fernanda WFB, Marilena EA, Gracialda CF, Raul NDCJ. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2017.16374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways. Food Chem Toxicol 2018; 119:98-105. [PMID: 29753870 DOI: 10.1016/j.fct.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Research over decades has progressively explored pharmacological actions of bitter gourd (Momordica charantia). Biologically and pharmacologically active molecules isolated from M. charantia have shown significant anti-cancer activity in cancer cell lines and xenografted mice. In this review spotlight was set on the bioactive compounds isolated from M. charantia that effectively inhibited cancer development and progression via regulation of protein network in cancer cells. We summarize most recent high-quality research work in cancer cell lines and xenografted mice related to tumor suppressive role-play of M. charantia and its bioactive compounds. Although M. charantia mediated health promoting, anti-diabetic, hepatoprotective, anti-inflammatory effects have been extensively investigated, there is insufficient information related to regulation of signaling networks by bioactive molecules obtained from M. charantia in different cancers. M. charantia has been shown to modulate AKT/mTOR/p70S6K signaling, p38MAPK-MAPKAPK-2/HSP-27 pathway, cell cycle regulatory proteins and apoptosis-associated proteins in different cancers. However, still there are visible knowledge gaps related to the drug targets in different cancers because we have not yet developed comprehensive understanding of the M. charantia mediated regulation of signal transduction pathways. To explore these questions, experimental platforms are needed that can prove to be helpful in getting a step closer to personalized medicine.
Collapse
|
15
|
Zhang J, Zhu WF, Xu J, Kitdamrongtham W, Manosroi A, Manosroi J, Tokuda H, Abe M, Akihisa T, Feng F. Potential cancer chemopreventive and anticancer constituents from the fruits of Ficus hispida L.f. (Moraceae). JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:37-46. [PMID: 29197545 DOI: 10.1016/j.jep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hispida L.f. (Moraceae) has been used as alternative for traditional medicine in the treatment of various ailments including cancer-cure. The aim of this study was to evaluate the cancer chemopreventive and anticancer activities of crude extracts of F. hispida, with the objective to screen the inhibition of Epstein-Barr virus early antigen, and cytotoxic active components, and provide foundation for potential applications of this promising medical plant. MATERIALS AND METHODS Compounds were isolated from the MeOH extract of F. hispida fruits, and their structure elucidation was performed on the basis of extensive spectroscopic analysis. The isolated compounds were evaluated for their inhibitory activities against the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in Raji cells, and cytotoxic activities against human cancer cell lines (HL60, A549, SKBR3, KB, Hela, HT29, and HepG2) and a normal cell (LO2) using MTT method. For the compound with potent cytotoxic activity, its apoptosis inducing activity was evaluated by the observation of ROS generation level expression, and membrane phospholipid exposure and DNA fragmentation in flow cytometry. The mechanisms of the apoptosis induction were analyzed by Western blotting. RESULTS Nineteen compounds, 1-19, including two new isoflavones, 3'-formyl-5,7-dihydroxy-4'-methoxyisoflavone (2) and 5,7-dihydroxy-4'-methoxy-3'- (3-methyl-2-hydroxybuten-3-yl)isoflavone (3), were isolated from the MeOH extract of F. hispida fruits. Five compounds, isowigtheone hydrate (1), 2, 3, 9, and 19, showed potent inhibitory effects on EBV-EA induction with IC50 values in the range of 271-340 molar ratio 32 pmol-1 TPA. In addition, five phenolic compounds, 1-3, 10, and 13, exhibited cytotoxic activity against two or more cell lines (IC50 2.5-95.8μM), as well as compounds 1 and 3 were also displayed high selectivity for LO2/HepG2 (SI 23.5 and 11.8, respectively), while the compound 1-induced ROS generation leads to activated caspases-3, -8, and -9 apoptotic process in HL60 cells. CONCLUSION This study has established that the MeOH extract of F. hispida fruits contains isoflavones, coumarins, caffeoylquinic acids, along with other compounds including phenolics and steroid glucoside as active principles, and has demonstrated that the chemical constituents of F. hispida may be valuable as potential chemopreventive and anticancer agents.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wan-Fang Zhu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jian Xu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | | | - Aranya Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiradej Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Harukuni Tokuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China.
| |
Collapse
|
16
|
Zhang J, Zhu WF, Zhu WY, Yang PP, Xu J, Manosroi J, Kikuchi T, Abe M, Akihisa T, Feng F. Melanogenesis-Inhibitory and Cytotoxic Activities of Chemical Constituents from the Leaves of Sauropus androgynus L. Merr. (Euphorbiaceae). Chem Biodivers 2017; 15. [PMID: 29144597 DOI: 10.1002/cbdv.201700486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/13/2017] [Indexed: 11/08/2022]
Abstract
A new steroid, 20-hydroxyisofucosterol (stigmasta-5,24(28)-diene-3β,20β-diol) (7), along with six known compounds 1 - 6 were isolated from the MeOH extract of the leaves of Sauropus androgynus L. Merr. (Euphorbiaceae). The structure of new steroid was determined by HR-APCI-MS and various NMR techniques in combination with literature data. Subsequently, their anti-inflammatory, cytotoxic activities against five human cell lines, as well as inhibitory activities against the α-MSH induced melanogenesis on the B16 cell line were evaluated. As the results, steroid compounds, 6 and 7 exhibited moderate cytotoxic to HL60, AZ521, SKBR3, and A549 tumor cell lines (IC50 26.9 - 45.1 μm) with high tumor selectivity for A549 relative to WI38 cell lines (SI 2.6 and 3.0, resp.). And, flavonoid compounds, 4 and 5 exhibited superior inhibitory activities against melanogenesis (67.0 - 94.7% melanin content), even with no or low toxicity to the cells (90.1 - 99.6% cell viability) at the concentrations from 10 to 100 μm. Furthermore, Western blot analysis suggested that compound 5 could inhibit melanogenesis by suppressing the protein expressions of MITF, TRP-1, TRP-2, and tyrosinase.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wan-Fang Zhu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Wei-Yuan Zhu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Pan Pan Yang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Jian Xu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Jiradej Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, P. R. China.,Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, P. R. China
| |
Collapse
|
17
|
Yue J, Xu J, Cao J, Zhang X, Zhao Y. Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
18
|
Chen CR, Liao YW, Kuo YH, Hsu JL, Chang CI. New Norcucurbitane Triterpenoids from Momordica charantia var. abbreviata. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two new 27-norcucurbitane triterpenoids, 5β,19-epoxy-3β-hydroxy-19( S)-methoxy-27-norcucurbita-6,23( E)-dien-25-one (1) and 3β-hydroxy-25-oxo-27-norcucurbita-6,23( E)-dien-5β,19-olide (2), together with one known cucurbitane triterpene, 5β,19-epoxycucurbita-6,23( E)-diene-3β,25-diol (3), were isolated from the fruits of Momordica charantia var. abbreviata. Their structures were elucidated by spectroscopic methods including EI-MS, 1H, 13C, and 2D NMR data and comparison with the data of known analogues.
Collapse
Affiliation(s)
- Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung 95002, Taiwan
| | - Yun-Wen Liao
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
19
|
Chen CR, Liao YW, Kuo YH, Hsu JL, Chang CI. Cucurbitane-Type Triterpenoids from Momordica charantia. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new cucurbitane-type triterpenoids, 7β,23( S)-dimethoxycucurbita-5,24-dien-3β-ol (1) and 3 β-hydroxycucurbita-6,23( E),25-trien-5 β,19-olide (2), and two known cucurbitane-type triterpenoids, 7 β,25-dimethoxycucurbita-5,23( E)-dien-3 β-ol (3) and karavilagenin D (4), were isolated from the fruit pulp of Momordica charantia. Their structures were established by means of 1D and 2D NMR spectra (1H, 13C, COSY, HMQC, HMBC, and NOESY) as well as EI-MS data.
Collapse
Affiliation(s)
- Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung 95002, Taiwan
| | - Yun-Wen Liao
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
20
|
Tsai TH, Huang WC, Ying HT, Kuo YH, Shen CC, Lin YK, Tsai PJ. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation. Molecules 2016; 21:454. [PMID: 27058519 PMCID: PMC6273076 DOI: 10.3390/molecules21040454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/15/2023] Open
Abstract
Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.
Collapse
Affiliation(s)
- Tzung-Hsun Tsai
- Department of Dentistry, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Wen-Cheng Huang
- Department of Pediatrics, Taipei Tzu-Chi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - How-Ting Ying
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Chien-Chang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Peitou, Taipei 112, Taiwan.
| | - Yin-Ku Lin
- Department of Chinese Internal Medicine, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| |
Collapse
|
21
|
Dandawate PR, Subramaniam D, Padhye SB, Anant S. Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med 2016; 14:81-100. [PMID: 26968675 PMCID: PMC5276711 DOI: 10.1016/s1875-5364(16)60002-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents.
Collapse
Affiliation(s)
- Prasad R Dandawate
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Subhash B Padhye
- Interdisciplinary Science & Technology Research Academy, Abeda Inamdar Senior College, Azam Campus, Pune, 411001, India
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Li ZJ, Chen JC, Deng YY, Song NL, Yu MY, Zhou L, Qiu MH. Two New Cucurbitane Triterpenoids from Immature Fruits ofMomordica charantia. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.018] [Citation(s) in RCA: 1440] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Antibacterial and Antiproliferative Activities of Plumericin, an Iridoid Isolated from Momordica charantia Vine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:823178. [PMID: 25945113 PMCID: PMC4405293 DOI: 10.1155/2015/823178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 01/09/2023]
Abstract
Plumericin, an iridoid lactone, was isolated with relatively high yield from Momordica charantia vine using the supercritical fluid extraction (SFE) and the separation box (Sepbox) comprising dual combination of high-performance liquid chromatography and solid phase extraction. This compound showed antibacterial activity against Enterococcus faecalis and Bacillus subtilis with minimum inhibitory concentration (MIC) values better than cloxacillin. Plumericin potently inhibited proliferation of two leukemic cancer cell lines: they were acute and chronic leukemic cancer cell lines, NB4 and K562, with the effective doses (ED50) of 4.35 ± 0.21 and 5.58 ± 0.35 μg/mL, respectively. In addition, the mechanism of growth inhibition in both cell lines was induced by apoptosis, together with G2/M arrest in K562 cells.
Collapse
|
25
|
Zhang B, Xie C, Wei Y, Li J, Yang X. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Protein Expr Purif 2015; 107:43-9. [DOI: 10.1016/j.pep.2014.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022]
|
26
|
Abstract
This review covers the isolation and structure determination of triterpenoids reported during 2012 including squalene derivatives, lanostanes, holostanes, cycloartanes, cucurbitanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes, isomalabaricanes and saponins; 348 references are cited.
Collapse
|
27
|
Chen JC, Yuan XX, Zhou L, Liu JQ, Nian Y, Li ZR, Li Y, Xie MJ, Qiu MH. Four New Cucurbitacins from the Fruit ofMomordica charantia. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Food prospects and nutraceutical attributes of Momordica species: A potential tropical bioresources – A review. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Manosroi A, Jantrawut P, Ogihara E, Yamamoto A, Fukatsu M, Yasukawa K, Tokuda H, Suzuki N, Manosroi J, Akihisa T. Biological activities of phenolic compounds and triterpenoids from the galls of Terminalia chebula. Chem Biodivers 2014; 10:1448-63. [PMID: 23939793 DOI: 10.1002/cbdv.201300149] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Indexed: 11/10/2022]
Abstract
Nine phenolic compounds, including two phenolic carboxylic acids, 1 and 2, seven hydrolyzable tannins, 3-9, eight triterpenoids, including four oleanane-type triterpene acids, 10-13, and four of their glucosides, 14-17, isolated from a MeOH extract of the gall of Terminalia chebula Retz. (myrobalan tree; Combretaceae), were evaluated for their inhibitory activities against melanogenesis in B16 melanoma cells induced by α-melanocyte-stimulating hormone (α-MSH), against the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in Raji cells, and against TPA-induced inflammation in mice. Their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities and cytotoxic activities against four human cancer cell lines were also evaluated. Compounds 6-9 and 12 exhibited potent inhibitory activities against melanogenesis (39.3-66.3% melanin content) with low toxicity to the cells (74.5-105.9% cell viability) at a concentration of 10 μM. Western-blot analysis revealed that isoterchebulin (8) reduced the protein levels of MITF (=microphtalmia-associated transcription factor), tyrosinase, and TRP-1 (=tyrosine-related protein 1), mostly in a concentration-dependent manner. Eight triterpenoids, 10-17, showed potent inhibitory effects on EBV-EA induction with the IC50 values in the range of 269-363 mol ratio/32 pmol TPA, while these compounds exhibited no DPPH scavenging activities (IC50 >100 μM). On the other hand, the nine phenolic compounds, 1-9, exhibited potent radical-scavenging activities (IC50 1.4-10.9 μM) with weak inhibitory effects on EBV-EA induction (IC50 460-518 mol ratio/32 pmol TPA). The tannin 6 and seven triterpenoids, 10-16, have been shown to inhibit TPA-induced inflammation (1 μg/ear) in mice with the ID50 values in the range of 0.06-0.33 μmol/ear. Arjungenin (10) exhibited inhibitory effect on skin-tumor promotion in an in vivo two-stage mouse-skin carcinogenesis test based on 7,12-dimethylbenz[a]anthracene (DMBA) as initiator and with TPA as promoter. Compounds 1, 2, 4, 5, 7-9, 12, and 13, against HL60 cell line, compounds 1 and 4, against AZ521 cell line, and compounds 1, 11, and 12, against SK-BR-3 cell line, showed moderate cytotoxic activities (IC50 13.9-73.2 μM).
Collapse
Affiliation(s)
- Aranya Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nagarani G, Abirami A, Siddhuraju P. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from different Momordica species. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Perez JL, Jayaprakasha GK, Patil BS. Separation and Identification of Cucurbitane-Type Triterpenoids from Bitter Melon. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1185.ch003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jose Luis Perez
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77845-2119
| | - G. K. Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77845-2119
| | - Bhimanagouda S. Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77845-2119
| |
Collapse
|
32
|
Inhibitory effects of new varieties of bitter melon on lipopolysaccharide-stimulated inflammatory response in RAW 264.7 cells. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
33
|
Weng JR, Bai LY, Chiu CF, Hu JL, Chiu SJ, Wu CY. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor γ Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:935675. [PMID: 23843889 PMCID: PMC3697288 DOI: 10.1155/2013/935675] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/15/2022]
Abstract
Although the antitumor activity of the crude extract of wild bitter gourd (Momordica charantia L.) has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3 β ,7 β -dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC), a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR) γ activation. Luciferase reporter assays indicated the ability of DMC to activate PPAR γ , and pharmacological inhibition of PPAR γ protected cells from DMC's antiproliferative effect. Western blot analysis indicated that DMC suppressed the expression of many PPAR γ -targeted signaling effectors, including cyclin D1, CDK6, Bcl-2, XIAP, cyclooxygenase-2, NF- κ B, and estrogen receptor α , and induced endoplasmic reticulum stress, as manifested by the induction of GADD153 and GRP78 expression. Moreover, DMC inhibited mTOR-p70S6K signaling through Akt downregulation and AMPK activation. The ability of DMC to activate AMPK in liver kinase (LK) B1-deficient MDA-MB-231 cells suggests that this activation was independent of LKB1-regulated cellular metabolic status. However, DMC induced a cytoprotective autophagy presumably through mTOR inhibition, which could be overcome by the cotreatment with the autophagy inhibitor chloroquine. Together, the ability of DMC to modulate multiple PPAR γ -targeted signaling pathways provides a mechanistic basis to account for the antitumor activity of wild bitter gourd.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Cancer Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Jing-Lan Hu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Shih-Jiuan Chiu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Yung Wu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
34
|
Liao YW, Chen CR, Chuu JJ, Huang HC, Hsu JL, Huang TC, Kuoe YH, Chang CI. Cucurbitane Triterpenoids from the Fruit Pulp ofMomordica charantiaand Their Cytotoxic Activity. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201200532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Kikuchi T, Zhang J, Huang Y, Watanabe K, Ishii K, Yamamoto A, Fukatsu M, Tanaka R, Akihisa T. Glycosidic Inhibitors of Melanogenesis from Leaves of Momordica charantia. Chem Biodivers 2012; 9:1221-30. [DOI: 10.1002/cbdv.201100350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|