1
|
Mazumder R, Ichudaule, Ghosh A, Deb S, Ghosh R. Significance of Chalcone Scaffolds in Medicinal Chemistry. Top Curr Chem (Cham) 2024; 382:22. [PMID: 38937401 DOI: 10.1007/s41061-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Chalcone is a simple naturally occurring α,β-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.
Collapse
Affiliation(s)
- Rishav Mazumder
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ichudaule
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ashmita Ghosh
- Department of Microbiology and Biotechnology, School of Natural Sciences, Techno India University Tripura, Maheshkhola, Anandanagar, Agartala, Tripura, 799004, India
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Rajat Ghosh
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| |
Collapse
|
2
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
3
|
Hassan STS, Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers-A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010247. [PMID: 36613688 PMCID: PMC9820319 DOI: 10.3390/ijms24010247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are cancer-causing viruses that belong to human gamma-herpesviruses. They are DNA viruses known to establish lifelong infections in humans, with the ability to develop various types of cancer. Drug resistance remains the main barrier to achieving effective therapies for viral infections and cancer. Thus, new medications with dual antiviral and anticancer actions are highly needed. Flavonoids are secondary metabolites biosynthesized by plants with diverse therapeutic effects on human health. In this review, we feature the potential role of flavonoids (flavones, protoflavones, isoflavones, flavanones, flavonols, dihydroflavonols, catechins, chalcones, anthocyanins, and other flavonoid-type compounds) in controlling gamma-herpesvirus-associated cancers by blocking EBV and KSHV infections and inhibiting the formation and growth of the correlated tumors, such as nasopharyngeal carcinoma, Burkitt's lymphoma, gastric cancer, extranodal NK/T-cell lymphoma, squamous cell carcinoma, Kaposi sarcoma, and primary effusion lymphoma. The underlying mechanisms via targeting EBV and KSHV life cycles and carcinogenesis are highlighted. Moreover, the effective concentrations or doses are emphasized.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence:
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| |
Collapse
|
4
|
Xiao Y, Lee IS. Effects of Microbial Transformation on the Biological Activities of Prenylated Chalcones from Angelica keiskei. Foods 2022; 11:543. [PMID: 35206019 PMCID: PMC8871312 DOI: 10.3390/foods11040543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Microbial transformation is an alternative method for structural modification. The current study aimed at application of microbial transformation for discovering new derivatives and investigating the structure-activity relationship of isobavachalcone (1), 4-hydroxyderricin (2), and xanthoangelol (3) isolated from the herb Angelica keiskei. In the initial screening process, 1-3 were incubated with microbes using a two-stage fermentation method and analyzed through TLC monitoring. The screening results showed that Rhizopus oryzae and Mucor hiemalis were able to transform 1 and 2, respectively. Additionally, M. hiemalis and Mortierella ramanniana var. angulispora were able to transform 3. Following scale-up fermentation, four new (4, 5, 7, and 10) and five known (6, 8, 9, 11, and 12) metabolites were produced. Cytotoxicity of all the compounds (1-12) was investigated using three human cancer cell lines including A375P, HT-29, and MCF-7 by MTT method. Meanwhile, the tyrosinase inhibitory activity of 1-12 was evaluated using l-tyrosine as a substrate. Overall, 1 and 3 displayed the highest cytotoxicity, and 5 and 7 exhibited the most potent tyrosinase inhibitory activity with relatively low cytotoxicity. This allowed us to postulate that the introduction of 4'-O-glucopyranosyl group led to the reduction in cytotoxicity and improvement in tyrosinase inhibitory activity.
Collapse
Affiliation(s)
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
5
|
Yang X, Xie J, Liu X, Li Z, Fang K, Zhang L, Han M, Zhang Z, Gong Z, Lin X, Shi X, Gao H, Lu K. Autophagy induction by xanthoangelol exhibits anti-metastatic activities in hepatocellular carcinoma. Cell Biochem Funct 2019; 37:128-138. [PMID: 30883849 DOI: 10.1002/cbf.3374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Xanthoangelol (XAG), a prenylated chalcone isolated from the Japanese herb Angelica keiskei Koidzumi, has been reported to exhibit antineoplastic properties. However, the specific anti-tumor activity of XAG in human hepatocellular carcinoma (HCC), and the relevant mechanisms are not known. Herein, we evaluated the effect of XAG against HCC in vitro and in vivo. Although XAG treatment did not significantly reduce the viability of the Hep3B and Huh7 cell lines, it suppressed cell migration, invasion, and EMT. This anti-metastatic effect of XAG was due to induction of autophagy, because treatment with the autophagy inhibitor 3-methyadenine (3-MA) or knockdown of the pro-autophagy Beclin-1 effectively abrogated the XAG-induced suppression of metastasis. Mechanistically, XAG induced autophagy via activation of the AMPK/mTOR signaling pathway, and XAG treatment dramatically increased the expression of p-AMPK while decreasing p-mTOR expression. In addition, blocking AMPK/mTOR axis with compound C abrogated the autophagy-mediated inhibition of metastasis. The murine model of HCC metastasis also showed that XAG effectively reduced the number of metastatic pulmonary nodules. Taken together, our results revealed that autophagy via the activation of AMPK/mTOR pathway is essential for the anti-metastatic effect of XAG against HCC. These findings not only contribute to our understanding of the anti-tumor activity of XAG but also provide a basis for its clinical application in HCC. Before this study, evidence of XAG on HCC was purely anecdotal; present study provides the first comprehensive assessments of XAG on HCC metastasis and investigates its underlying mechanism. Results suggest that XAG exerts anti-metastatic properties against HCC through inducing autophagy which is mediated by the activation of AMPK/mTOR signaling pathway. This research extends our knowledge about the antineoplastic properties of XAG and suggests that induction autophagy may represent future treatment strategies for metastatic HCC.
Collapse
Affiliation(s)
- Xiuwei Yang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Xie
- Medical College, Qingdao University, Qingdao, China
| | - Xiaoxiao Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zichao Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Kun Fang
- Qingdao Fifth People's Hoespital (Shandong Qingdao Hospital of Integrated Traditional and Western Medicine), Qingdao, China
| | - Luying Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Mei Han
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhuang Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhi Gong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuezhu Lin
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xianzhou Shi
- Northeast Yucai Bilingual School, Shenyang, China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
6
|
Zhang J, Zhu WF, Xu J, Kitdamrongtham W, Manosroi A, Manosroi J, Tokuda H, Abe M, Akihisa T, Feng F. Potential cancer chemopreventive and anticancer constituents from the fruits of Ficus hispida L.f. (Moraceae). JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:37-46. [PMID: 29197545 DOI: 10.1016/j.jep.2017.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hispida L.f. (Moraceae) has been used as alternative for traditional medicine in the treatment of various ailments including cancer-cure. The aim of this study was to evaluate the cancer chemopreventive and anticancer activities of crude extracts of F. hispida, with the objective to screen the inhibition of Epstein-Barr virus early antigen, and cytotoxic active components, and provide foundation for potential applications of this promising medical plant. MATERIALS AND METHODS Compounds were isolated from the MeOH extract of F. hispida fruits, and their structure elucidation was performed on the basis of extensive spectroscopic analysis. The isolated compounds were evaluated for their inhibitory activities against the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in Raji cells, and cytotoxic activities against human cancer cell lines (HL60, A549, SKBR3, KB, Hela, HT29, and HepG2) and a normal cell (LO2) using MTT method. For the compound with potent cytotoxic activity, its apoptosis inducing activity was evaluated by the observation of ROS generation level expression, and membrane phospholipid exposure and DNA fragmentation in flow cytometry. The mechanisms of the apoptosis induction were analyzed by Western blotting. RESULTS Nineteen compounds, 1-19, including two new isoflavones, 3'-formyl-5,7-dihydroxy-4'-methoxyisoflavone (2) and 5,7-dihydroxy-4'-methoxy-3'- (3-methyl-2-hydroxybuten-3-yl)isoflavone (3), were isolated from the MeOH extract of F. hispida fruits. Five compounds, isowigtheone hydrate (1), 2, 3, 9, and 19, showed potent inhibitory effects on EBV-EA induction with IC50 values in the range of 271-340 molar ratio 32 pmol-1 TPA. In addition, five phenolic compounds, 1-3, 10, and 13, exhibited cytotoxic activity against two or more cell lines (IC50 2.5-95.8μM), as well as compounds 1 and 3 were also displayed high selectivity for LO2/HepG2 (SI 23.5 and 11.8, respectively), while the compound 1-induced ROS generation leads to activated caspases-3, -8, and -9 apoptotic process in HL60 cells. CONCLUSION This study has established that the MeOH extract of F. hispida fruits contains isoflavones, coumarins, caffeoylquinic acids, along with other compounds including phenolics and steroid glucoside as active principles, and has demonstrated that the chemical constituents of F. hispida may be valuable as potential chemopreventive and anticancer agents.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wan-Fang Zhu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jian Xu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | | | - Aranya Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiradej Manosroi
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Harukuni Tokuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China.
| |
Collapse
|
7
|
Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis. Toxins (Basel) 2017; 10:toxins10010009. [PMID: 29295544 PMCID: PMC5793096 DOI: 10.3390/toxins10010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Hanny University, Suseong-gu, Deagu 42158, Korea.
| | - Yun-Yeop Cha
- Department of Rehabilitation Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
8
|
Zhang J, Yamada S, Ogihara E, Kurita M, Banno N, Qu W, Feng F, Akihisa T. Biological Activities of Triterpenoids and Phenolic Compounds from Myrica cerifera Bark. Chem Biodivers 2016; 13:1601-1609. [PMID: 27492128 DOI: 10.1002/cbdv.201600247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
Seven triterpenoids, 1 - 7, two diarylheptanoids, 8 and 9, four phenolic compounds, 10 - 13, and three other compounds, 14 - 16, were isolated from the hexane and MeOH extracts of the bark of Myrica cerifera L. (Myricaceae). Among these compounds, betulin (1), ursolic acid (3), and myricanol (8) exhibited cytotoxic activities against HL60 (leukemia), A549 (lung), and SK-BR-3 (breast) human cancer cell lines (IC50 3.1 - 24.2 μm). Compound 8 induced apoptotic cell death in HL60 cells (IC50 5.3 μm) upon evaluation of the apoptosis-inducing activity by flow cytometric analysis and by Hoechst 33342 staining method. Western blot analysis on HL60 cells revealed that 8 activated caspases-3, -8, and -9 suggesting that 8 induced apoptosis via both mitochondrial and death receptor pathways in HL60. Upon evaluation of the melanogenesis-inhibitory activity in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), erythrodiol (7), 4-hydroxy-2-methoxyphenyl β-d-glucopyranoside (13), and butyl quinate (15) exhibited inhibitory effects (65.4 - 86.0% melanin content) with no, or almost no, toxicity to the cells (85.9 - 107.4% cell viability) at 100 μm concentration. In addition, 8, myricanone (9), myricitrin (10), protocatechuic acid (11), and gallic acid (12) revealed potent DPPH radical-scavenging activities (IC50 6.9 - 20.5 μm).
Collapse
Affiliation(s)
- Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Satoshi Yamada
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Eri Ogihara
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Masahiro Kurita
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Norihiro Banno
- Ichimaru Pharcos Company Ltd., 318-1 Asagi, Motosu-shi, Gifu, 501-0475, Japan
| | - Wei Qu
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Feng Feng
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Toshihiro Akihisa
- Akihisa Medical Clinic, 1086-3 Kamo, Sanda-shi, Hyogo, 669-1311, Japan
| |
Collapse
|
9
|
Sumiyoshi M, Taniguchi M, Baba K, Kimura Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica keiskei roots through the inhibited activation and differentiation of M2 macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:759-767. [PMID: 26141763 DOI: 10.1016/j.phymed.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tumor growth and metastasis have been closely associated with the M2 macrophage-induced activation of tumor-associated macrophages (TAMs). PURPOSE The antitumor and antimetastatic actions of xanthangelol and 4-hydroxyderricin on the role of M2 macrophages in the TAMs of highly metastatic osteosarcoma LM8-bearing mice have not yet been fully elucidated. In order to clarify the mechanisms underlying the antitumor and antimetastatic actions of the above chalcones, we performed in vivo and in vitro studies. STUDY DESIGN The antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin were examined in vivo and the effects on M2 macrophage differentiation and activation were examined in vitro. METHODS We examined the antitumor and antimetastatic effects of xanthoangelol and 4-hydroxyderricin on highly metastatic osteosarcoma LM8-bearing mice (in vivo). Further, we examined their effects on the differentiation of interleukin (IL)-4 plus IL-13-induced M2 macrophages and activation of IL-4 plus IL13-induced M2 macrophages (in vitro). We also investigated the expression and phosphorylation of signal transducer and activator of transcript 3 (Stat 3) in the differentiation process of M2-polarized macrophages (in vitro). RESULTS Xanthoangelol or 4-hydroxyderricin (25 or 50 mg/kg, twice daily) inhibited tumor growth, metastasis to the lung and liver, and TAM expression in tumors. In addition, xanthoangelol (10, 25 or 50 μM) and 4-hydroxyderricin (5, 10, 25 or 50 μM) inhibited the production of IL-10 and monocyte chemoattractant protein (MCP)-1 in M2-polarized macrophages. This result indicated that xanthoangelol and 4-hydroxyderricin inhibited the activation of M2 macrophages. Furthermore, xanthoangelol (5-50 μM) inhibited the phosphorylation of Stat 3 without affecting the expression of the Stat 3 protein in the differentiation process of M2 macrophages, which indicated that these chalcones inhibited the differentiation of M2 macrophages. CONCLUSION These findings suggested that the antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderrcin might be attributed to the regulated activated TAMs through the inhibition of activation and differentiation of M2 macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Maho Sumiyoshi
- Division of Functional Histology, Department of Functional Biomedicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan
| | - Masahiko Taniguchi
- Department of Pharmacognosy, Osaka University of Pharmaceutical Sciences, Takatsuki City, Osaka 569-1094, Japan
| | - Kimiye Baba
- Department of Pharmacognosy, Osaka University of Pharmaceutical Sciences, Takatsuki City, Osaka 569-1094, Japan
| | - Yoshiyuki Kimura
- Division of Biochemical Pharmacology, Department of Basic Medical Research, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan .
| |
Collapse
|
10
|
Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 2015; 33:214-223. [PMID: 25447420 DOI: 10.1016/j.biotechadv.2014.10.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/21/2014] [Accepted: 10/29/2014] [Indexed: 02/08/2023]
|
11
|
Moon HI, Jeong MH, Jo WS. Protective Activity of C-Geranylflavonoid Analogs from Paulownia tomentosaagainst DNA Damage in 137Cs Irradiated AHH-1Cells. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Radiotherapy is an important form of treatment for a wide range of cancers, but it can damage DNA and cause adverse effects. We investigated if the diplacone analogs of P. tomentosa were radio-protective in a human lymphoblastoid cell line (AHH-1). Four geranylated flavonoids, diplacone, 3′- O-methyl-5′-hydroxydiplacone, 3′- O-methyl-5′- O-methyldiplacone and 3′- O-methyldiplacol, were tested for their antioxidant and radio-protective effects. Diplacone analogs effectively scavenged free radicals and inhibited radiation-induced DNA strand breaks in vitro. They significantly decreased levels of reactive oxygen species and cellular DNA damage in 2 Gy-irradiated AHH-1 cells. Glutathione levels and superoxide dismutase activity in irradiated AHH-1 cells increased significantly after treatment with these analogs. The enhanced biological anti-oxidant activity and radioprotective activity of diplacone analogs maintained the survival of irradiated AHH-1 cells in a clonogenic assay. These data suggest that diplacone analogs may protect healthy tissue surrounding tumor cells during radiotherapy to ensure better control of radiotherapy and allow higher doses of radiotherapy to be employed.
Collapse
Affiliation(s)
- Hyung-In Moon
- Department of Medicianl Biotechnology, Dong-A University, Busan 604-714, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Busan 602-714, Republic of Korea
| | - Wol Soon Jo
- Department of Research center, Dong Nam Institute of Radiological & Medical Sciences, Busan 619-953, Republic of Korea
| |
Collapse
|
12
|
Son DJ, Park YO, Yu C, Lee SE, Park YH. Bioassay-guided isolation and identification of anti-platelet-active compounds from the root of Ashitaba (Angelica keiskeiKoidz.). Nat Prod Res 2014; 28:2312-6. [DOI: 10.1080/14786419.2014.931389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Zhang T, Yamamoto N, Ashida H. Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells. Food Funct 2014; 5:1134-41. [PMID: 24722377 DOI: 10.1039/c3fo60694e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease. 4-Hydroxyderricin (4HD), xanthoangelol (XAG), cardamonin (CAR) and flavokawain B (FKB) are chalcones that have exhibited various biological effects against obesity, inflammation, and diabetes; however, little is known about the inhibitory effects of these chalcones on fatty liver disease. In the present study, we investigated the ability of 4HD, XAG, CAR, and FKB to reduce lipid accumulation in hepatocytes. When HepG2 cells were treated with a mixture of fatty acids (FAs; palmitic acid : oleic acid = 1 : 2 ratio), significant lipid accumulation was observed. Under the same experimental conditions, addition of chalcones at 5 μM significantly suppressed the FA-induced lipid accumulation. We found that the expression of sterol regulatory element-binding protein-1 (SREBP-1), a key molecule involved in lipogenesis, was decreased in these chalcone-treated cells. We also found that these chalcones increased the expression of peroxisome proliferator-activated receptor α (PPARα), which is involved in FA oxidation. Moreover, these chalcones increased phosphorylation of AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), upstream regulators of SREBP-1 and PPARα. We confirmed that an AMPK inhibitor, compound C, reversed chalcone-induced changes in SREBP-1 and PPARα expression in the HepG2 cells. Collectively, we found that 4HD, XAG, CAR, and XAG attenuated lipid accumulation through activation of the LKB1/AMPK signaling pathway in HepG2 cells.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
14
|
Zhang T, Sawada K, Yamamoto N, Ashida H. 4-Hydroxyderricin and xanthoangelol from Ashitaba (Angelica keiskei) suppress differentiation of preadiopocytes to adipocytes via AMPK and MAPK pathways. Mol Nutr Food Res 2013; 57:1729-40. [PMID: 23681764 DOI: 10.1002/mnfr.201300020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/07/2022]
Abstract
SCOPE Adipocytes differentiation is deeply involved in the onset of obesity. 4-Hydroxyderricin (4HD) and xanthoangelol (XAG) are the chalcones that are derived from Ashitaba (Angelica keiskei). In this study, we demonstrated the inhibitory effects of these chalcones on adipocytes differentiation. METHODS AND RESULTS 4HD and XAG suppressed intracellular lipid accumulation by Oil red O staining at 5 μM without cytotoxicity. They inhibited adipocytes differentiation accompanied by down-expression of adipocyte-specific transcription factors, CCAAT/enhancer-binding protein-β (C/EBP-β), C/EBP-α, and peroxisome proliferator-activated receptor gamma (PPAR-γ) using RT-PCR and Western blotting analysis. To obtain insights into the underlying mechanism, the activation of AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase pathways was investigated. These two chalcones promoted phosphorylation of AMPK and acetyl CoA carboxylase during differentiation of 3T3-L1 adipocytes accompanied by a decrease in glycerol-3-phosphate acyl transferase-1 and an increase in carnitine palmitoyltransferase-1 mRNA expression. These chalcones also promoted phosphorylation of extracellular signal-regulated kinases and Jun aminoterminal kinases, but not p38. Moreover, the inhibitors for AMPK and extracellular signal-regulated kinases abolished the chalcones-caused down-expression of C/EBP-β, C/EBP-α, and PPAR-γ. Treatment with Jun aminoterminal kinases inhibitor abolished the down-expression of C/EBP-α and PPAR-γ, but not C/EBP-β. CONCLUSION 4HD and XAG inhibit adipocytes differentiation through AMPK and mitogen-activated protein kinase pathways, resulting in the down-expression of adipocyte-specific transcription factors.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
15
|
Battenberg OA, Yang Y, Verhelst SHL, Sieber SA. Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. MOLECULAR BIOSYSTEMS 2013; 9:343-51. [DOI: 10.1039/c2mb25446h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|