Pathak C, Gupta SK, Gangwar MK, Prakasham AP, Ghosh P. Modeling the Active Site of the Purple Acid Phosphatase Enzyme with Hetero-Dinuclear Mixed Valence M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] Complexes Supported over a [N
6O] Unsymmetrical Ligand.
ACS OMEGA 2017;
2:4737-4750. [PMID:
31457757 PMCID:
PMC6641979 DOI:
10.1021/acsomega.7b00671]
[Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/08/2017] [Indexed: 05/13/2023]
Abstract
The active site of the purple acid phosphatase enzyme has been successfully modeled by a series of hetero-dinuclear M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] type complexes of an unsymmetrical [N6O] ligand that contained a bridging phenoxide moiety and one imidazoyl and three pyridyl moieties as the terminal N-binding sites. In particular, the hetero-dinuclear complexes, {L[MII(μ-OAc)2FeIII]}(ClO4)2 [M = Zn (3a), Ni (3b), Co (4a), and Cu (4b)], were obtained directly from the phenoxy-bridged ligand (HL), namely 2-{[bis(2-methylpyridyl)amino]methyl}-6-{[((1-methylimidazol-2-yl)methyl)(2-pyridylmethyl)amino]methyl}-4-t-butylphenol (2), upon sequential addition of Fe(ClO4)3·XH2O and M(ClO4)2·6H2O (M = Zn and Ni) or M(OAc)2·XH2O (M = Co and Cu), in a low-to-moderate (ca. 32-53%) yield. The temperature-dependent magnetic susceptibility measurements indicated weak antiferromagnetic coupling interactions occurring between the two metal centers in their high-spin states. All of the 3(a-b) and 4(a-b) complexes successfully carried out the hydrolysis of the bis(2,4-dinitrophenyl)phosphate (2,4-BDNPP) substrate in a mixed CH3CN/H2O (v/v 1:1) medium in the pH range of 5.5-10.5 at room temperature, thereby mimicking the functional activity of the native enzyme. The spectrophotometric titration suggested a monoaquated and dihydroxo species of the type {L[(H2O)MII(μ-OH)FeIII(OH)]}2+ to be the catalytically active species for the phosphodiester hydrolysis reaction within the pH range of ca. 5.80-7.15. Last, the kinetic studies on the hydrolysis of the model substrate, 2,4-BDNPP, divulge a Michaelis-Menten-type behavior for all complexes.
Collapse