1
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
2
|
Shatova OP, Shegay PV, Zabolotneva AA, Shestopalov AV, Kaprin AD. Lactate: a New Look at the Role of an Evolutionarily Ancient Metabolite. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302206028x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Prosdocimi F, de Farias ST. Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. Biosystems 2022; 220:104751. [DOI: 10.1016/j.biosystems.2022.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
4
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
5
|
Wang L, Lin Y, Zhou Y, Xie H, Song J, Li M, Huang Y, Huang X, Mann S. Autonomic Behaviors in Lipase‐Active Oil Droplets. Angew Chem Int Ed Engl 2019; 58:1067-1071. [DOI: 10.1002/anie.201812111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Yuting Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Hui Xie
- State Key Laboratory of Robotics & SystemsHIT Harbin 150080 China
| | - Jianmin Song
- State Key Laboratory of Robotics & SystemsHIT Harbin 150080 China
| | - Mei Li
- Centre for Protolife Research & Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Stephen Mann
- Centre for Protolife Research & Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
6
|
Wang L, Lin Y, Zhou Y, Xie H, Song J, Li M, Huang Y, Huang X, Mann S. Autonomic Behaviors in Lipase‐Active Oil Droplets. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Yuting Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Hui Xie
- State Key Laboratory of Robotics & SystemsHIT Harbin 150080 China
| | - Jianmin Song
- State Key Laboratory of Robotics & SystemsHIT Harbin 150080 China
| | - Mei Li
- Centre for Protolife Research & Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry & Chemical EngineeringHarbin Institute of Technology (HIT) Harbin 150001 China
| | - Stephen Mann
- Centre for Protolife Research & Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
7
|
Ralser M. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem J 2018; 475:2577-2592. [PMID: 30166494 PMCID: PMC6117946 DOI: 10.1042/bcj20160866] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Until recently, prebiotic precursors to metabolic pathways were not known. In parallel, chemistry achieved the synthesis of amino acids and nucleotides only in reaction sequences that do not resemble metabolic pathways, and by using condition step changes, incompatible with enzyme evolution. As a consequence, it was frequently assumed that the topological organisation of the metabolic pathway has formed in a Darwinian process. The situation changed with the discovery of a non-enzymatic glycolysis and pentose phosphate pathway. The suite of metabolism-like reactions is promoted by a metal cation, (Fe(II)), abundant in Archean sediment, and requires no condition step changes. Knowledge about metabolism-like reaction topologies has accumulated since, and supports non-enzymatic origins of gluconeogenesis, the S-adenosylmethionine pathway, the Krebs cycle, as well as CO2 fixation. It now feels that it is only a question of time until essential parts of metabolism can be replicated non-enzymatically. Here, I review the 'accidents' that led to the discovery of the non-enzymatic glycolysis, and on the example of a chemical network based on hydrogen cyanide, I provide reasoning why metabolism-like non-enzymatic reaction topologies may have been missed for a long time. Finally, I discuss that, on the basis of non-enzymatic metabolism-like networks, one can elaborate stepwise scenarios for the origin of metabolic pathways, a situation that increasingly renders the origins of metabolism a tangible problem.
Collapse
Affiliation(s)
- Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, U.K
- Department of Biochemistry, Charitè, Am Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Keller MA, Driscoll PC, Messner CB, Ralser M. 1H-NMR as implemented in several origin of life studies artificially implies the absence of metabolism-like non-enzymatic reactions by being signal-suppressed. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.12103.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background. Life depends on small subsets of chemically possible reactions. A chemical process can hence be prebiotically plausible, yet be unrelated to the origins of life. An example is the synthesis of nucleotides from hydrogen cyanide, considered prebiotically plausible, but incompatible with metabolic evolution. In contrast, only few metabolism-compatible prebiotic reactions were known until recently. Here, we question whether technical limitations may have contributed to the situation. Methods: Enzymes evolved to accelerate and control biochemical reactions. This situation dictates that compared to modern metabolic pathways, precursors to enzymatic reactions have been slower and less efficient, yielding lower metabolite quantities. This situation demands for the application of highly sensitive analytical techniques for studying ‘proto-metabolism’. We noticed that a set of proto-metabolism studies derive conclusions from the absence of metabolism-like signals, yet do not report detection limits. We here benchmark the respective 1H-NMR implementation for the ability to detect Krebs cycle intermediates, considered examples of plausible metabolic precursors. Results: Compared to metabolomics ‘gold-standard’ methods, 1H-NMR as implemented is i) at least one hundred- to thousand-fold less sensitive, ii) prone to selective metabolite loss, and iii) subject to signal suppression by Fe(II) concentrations as extrapolated from Archean sediment. In sum these restrictions mount to huge sensitivity deficits, so that even highly concentrated Krebs cycle intermediates are rendered undetectable unless the method is altered to boost sensitivity. Conclusions 1H-NMR as implemented in several origin of life studies does not achieve the sensitivity to detect cellular metabolite concentrations, let alone evolutionary precursors at even lower concentration. These studies can hence not serve as proof-of-absence for metabolism-like reactions. Origin of life theories that essentially depend on this assumption, i.e. those that consider proto-metabolism to consist of non-metabolism-like reactions derived from non-metabolic precursors like hydrogen cyanide, may have been derived from a misinterpretation of negative analytical results.
Collapse
|
9
|
Keller MA, Driscoll PC, Messner CB, Ralser M. Primordial Krebs-cycle-like non-enzymatic reactions detected by mass spectrometry and nuclear magnetic resonance. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.12103.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Metabolism is the process of nutrient uptake and conversion, and executed by the metabolic network. Its evolutionary precursors most likely originated in non-enzymatic chemistry. To be exploitable in a Darwinian process that forms a metabolic pathway, non-enzymatic reactions need to form a chemical network that produces advantage-providing metabolites in a single, life compatible condition. In a hypothesis-generating, large-scale experiment, we recently screened iron and sulfur-rich solutions, and report that upon the formation of sulfate radicals, Krebs cycle intermediates establish metabolism-like non-enzymatic reactivity. A challenge to our results claims that the results obtained by liquid chromatography-selective reaction monitoring (LC-SRM) would not be reproducible by nuclear magnetic resonance spectroscopy (1H-NMR). Methods: This study compared the application of the two techniques to the relevant samples. Results: We detect hundred- to thousand-fold differences in the specific limits of detection between LC-SRM and 1H-NMR to detect Krebs cycle intermediates. Further, the use of 1H-NMR was found generally problematic to characterize early metabolic reactions, as Archean-sediment typical iron concentrations cause paramagnetic signal suppression. Consequently, we selected non-enzymatic Krebs cycle reactions that fall within the determined technical limits. We confirm that these proceed unequivocally as evidenced by both LC-SRM and 1H-NMR. Conclusions: These results strengthen our previous conclusions about the existence of unifying reaction conditions that enables a series of co-occurring metabolism-like non-enzymatic Krebs cycle reactions. We further discuss why constraints applying to metabolism disentangle concentration from importance of any reaction intermediates, and why evolutionary precursors to metabolic pathways must have had much lower metabolite concentrations compared to modern metabolic networks. Research into the chemical origins of life will hence miss out on the chemistry relevant for metabolism if its focus is restricted solely to highly abundant and unreactive metabolites, including when it ignores life-compatibility of the reaction conditions as an essential constraint in enzyme evolution.
Collapse
|
10
|
Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. Proc Natl Acad Sci U S A 2017; 114:7403-7407. [PMID: 28652321 DOI: 10.1073/pnas.1702274114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.
Collapse
|
11
|
Keller MA, Kampjut D, Harrison SA, Ralser M. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat Ecol Evol 2017; 1:83. [PMID: 28584880 PMCID: PMC5455955 DOI: 10.1038/s41559-017-0083] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022]
Abstract
The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed 'as an appeal to magic', citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Domen Kampjut
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Stuart A. Harrison
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK
| |
Collapse
|
12
|
Abstract
An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve.
Collapse
|
13
|
D'Aguanno E, Altamura E, Mavelli F, Fahr A, Stano P, Luisi PL. Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life (Basel) 2015; 5:969-96. [PMID: 25793278 PMCID: PMC4390888 DOI: 10.3390/life5010969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/10/2015] [Indexed: 01/18/2023] Open
Abstract
How did primitive living cells originate? The formation of early cells, which were probably solute-filled vesicles capable of performing a rudimentary metabolism (and possibly self-reproduction), is still one of the big unsolved questions in origin of life. We have recently used lipid vesicles (liposomes) as primitive cell models, aiming at the study of the physical mechanisms for macromolecules encapsulation. We have reported that proteins and ribosomes can be encapsulated very efficiently, against statistical expectations, inside a small number of liposomes. Moreover the transcription-translation mixture, which realistically mimics a sort of minimal metabolic network, can be functionally reconstituted in liposomes owing to a self-concentration mechanism. Here we firstly summarize the recent advancements in this research line, highlighting how these results open a new vista on the phenomena that could have been important for the formation of functional primitive cells. Then, we present new evidences on the non-random entrapment of macromolecules (proteins, dextrans) in phospholipid vesicle, and in particular we show how enzymatic reactions can be accelerated because of the enhancement of their concentration inside liposomes.
Collapse
Affiliation(s)
- Erica D'Aguanno
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany.
| | - Emiliano Altamura
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy.
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy.
| | - Alfred Fahr
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Lessingstraße 8, D-07743 Jena, Germany.
| | - Pasquale Stano
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
| | - Pier Luigi Luisi
- Science Department, Roma Tre University, Viale G. Marconi 446, I-00146 Rome, Italy.
| |
Collapse
|
14
|
de Souza TP, Fahr A, Luisi PL, Stano P. Spontaneous Encapsulation and Concentration of Biological Macromolecules in Liposomes: An Intriguing Phenomenon and Its Relevance in Origins of Life. J Mol Evol 2014; 79:179-92. [DOI: 10.1007/s00239-014-9655-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
|
15
|
Keller MA, Turchyn AV, Ralser M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 2014; 10:725. [PMID: 24771084 PMCID: PMC4023395 DOI: 10.1002/msb.20145228] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 11/30/2022] Open
Abstract
The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.
Collapse
Affiliation(s)
- Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
| | | | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Division of Physiology and MetabolismMRC National Institute for Medical ResearchMill HillLondonUK
| |
Collapse
|