1
|
Yao C, Ye G, Yang Q, Chen Z, Yang M. The Disulfide Bond-Mediated Cyclization of Oral Peptides. Curr Protein Pept Sci 2024; 25:438-442. [PMID: 38934364 DOI: 10.2174/0113892037280719231214095428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 06/28/2024]
Abstract
'Structure determines function' is a consensus in the current biological community, but the structural characteristics corresponding to a certain function have always been a hot field of scientific exploration. A peptide is a bio-active molecule that is between the size of an antibody and a small molecule. Still, the gastrointestinal barrier and the physicochemical properties of peptides have always limited the oral administration of peptides. Therefore, we analyze the main ways oral peptide conversion strategies of peptide modification and permeation enhancers. Based on our analysis of the structure of natural oral peptides, which can be absorbed through the gastrointestinal tract, we believe that the design strategy of natural stapled peptides based on disulfide bonds is good for oral peptide design. This cannot only be used to identify anti-gastrointestinal digestive structural proteins in nature but also provide a solid structural foundation for the construction of new oral peptide drugs.
Collapse
Affiliation(s)
- Chenguang Yao
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Guoguo Ye
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qin Yang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenwang Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Sciences; Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Kanellopoulos P, Nock BA, Krenning EP, Maina T. Toward Stability Enhancement of NTS 1R-Targeted Radioligands: Structural Interventions on [ 99mTc]Tc-DT1. Pharmaceutics 2023; 15:2092. [PMID: 37631306 PMCID: PMC10459693 DOI: 10.3390/pharmaceutics15082092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The neurotensin subtype 1 receptor (NTS1R) is overexpressed in a number of human tumors, thereby representing a valid target for cancer theranostics with radiolabeled neurotensin (NT) analogs like [99mTc]Tc-DT1 (DT1, N4-Gly7-NT(8-13)). Thus far, the fast degradation of intravenously injected NT-radioligands by neprilysin (NEP) and angiotensin-converting enzyme (ACE) has compromised their clinical applicability. Aiming at metabolic stability enhancements, we herein introduce (i) DT7 ([DAsn14]DT1) and (ii) DT8 ([β-Homoleucine13]DT1), modified at the C-terminus, along with (iii) DT9 ([(palmitoyl)Lys7]DT1), carrying an albumin-binding domain (ABD) at Lys7. The biological profiles of the new [99mTc]Tc-radioligands were compared with [99mTc]Tc-DT1, using NTS1R-expressing AsPC-1 cells and mice models without or during NEP/ACE inhibition. The radioligands showed enhanced in vivo stability vs. [99mTc]Tc-DT1, with [99mTc]Tc-DT9 displaying full resistance to both peptidases. Furthermore, [99mTc]Tc-DT9 achieved the highest cell internalization and tumor uptake even without NEP/ACE-inhibition but with unfavorably high background radioactivity levels. Hence, unlike C-terminal modification, the introduction of a pendant ABD group in the linker turned out to be the most promising strategy toward metabolic stability, cell uptake, and tumor accumulation of [99mTc]Tc-DT1 mimics. To improve the observed suboptimal pharmacokinetics of [99mTc]Tc-DT9, the replacement of palmitoyl on Lys7 by other ABD groups is currently being pursued.
Collapse
Affiliation(s)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (B.A.N.)
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Theodosia Maina
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| |
Collapse
|
3
|
Lakis E, Magyari S, Piel J. In Vivo Production of Diverse β‐Amino Acid‐Containing Proteins. Angew Chem Int Ed Engl 2022; 61:e202202695. [DOI: 10.1002/anie.202202695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Edgars Lakis
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Sarolt Magyari
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Jörn Piel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
4
|
Piel J, Lakis E, Magyari S. In‐vivo production of diverse β‐amino acid‐containing proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jörn Piel
- ETH Zürich Department of Biology Vladimir-Prelog-Weg 4 8093 Zürich SWITZERLAND
| | - Edgars Lakis
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| | - Sarolt Magyari
- ETH Zurich: Eidgenossische Technische Hochschule Zurich Institute of Microbiology SWITZERLAND
| |
Collapse
|
5
|
Abbasi Gharibkandi N, Conlon JM, Hosseinimehr SJ. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides 2020; 133:170385. [PMID: 32822772 DOI: 10.1016/j.peptides.2020.170385] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Tumor cells overexpress a variety of receptors that are emerging targets in cancer chemotherapy. Radiolabeled peptides with high affinity and selectivity for these overexpressed receptors have been designed for both imaging and therapy purposes. Such peptides display advantages such as high selectivity for tumor cells, rapid tumor tissue penetration, and rapid clearance from non-target tissues and the circulation. However, the very short in vivo half-life of radiolabeled peptides, arising from enzymatic degradation and/or efficient clearance by the kidney, limits their accumulation in tumors. This review presents various strategies that have been applied to extend the half-life extension and improve the pharmacokinetic characteristics of radiolabeled peptides. These include amino acid substitution, modification of the peptide termini, dimerization and multimerization of the peptide, cyclization, conjugation with polymers, sugars and albumin and use of peptidase inhibitors.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Kanellopoulos P, Kaloudi A, de Jong M, Krenning EP, Nock BA, Maina T. Key-Protease Inhibition Regimens Promote Tumor Targeting of Neurotensin Radioligands. Pharmaceutics 2020; 12:pharmaceutics12060528. [PMID: 32526874 PMCID: PMC7356968 DOI: 10.3390/pharmaceutics12060528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neurotensin subtype 1 receptors (NTS1R) represent attractive molecular targets for directing radiolabeled neurotensin (NT) analogs to tumor lesions for diagnostic and therapeutic purposes. This approach has been largely undermined by the rapid in vivo degradation of linear NT-based radioligands. Herein, we aim to increase the tumor targeting of three 99mTc-labeled NT analogs by the in-situ inhibition of two key proteases involved in their catabolism. DT1 ([N4-Gly7]NT(7-13)), DT5 ([N4-βAla7,Dab9]NT(7-13)), and DT6 ([N4-βAla7,Dab9,Tle12]]NT(7-13)) were labeled with 99mTc. Their profiles were investigated in NTS1R-positive colon adenocarcinoma WiDr cells and mice treated or not with the neprilysin (NEP)-inhibitor phosphoramidon (PA) and/or the angiotensin converting enzyme (ACE)-inhibitor lisinopril (Lis). Structural modifications led to the partial stabilization of 99mTc-DT6 in peripheral mice blood (55.1 ± 3.9% intact), whereas 99mTc-DT1 and 99mTc-DT5 were totally degraded within 5 min. Coinjection of PA and/or Lis significantly stabilized all three analogs, leading to a remarkable enhancement of tumor uptake for 99mTc-DT1 and 99mTc-DT5, but was less effective in the case of poorly internalizing 99mTc-DT6. In conclusion, NEP and/or ACE inhibition represents a powerful tool to improve tumor targeting and the overall pharmacokinetics of NT-based radioligands, and warrants further validation in the field of NTS1R-targeted tumor imaging and therapy.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
- Molecular Pharmacology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Aikaterini Kaloudi
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine Erasmus MC, 3015 CN Rotterdam, The Netherlands;
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR “Demokritos”, 15341 Athens, Greece; (P.K.); (A.K.); (B.A.N.)
- Correspondence: ; Tel.: +30-210-650-3908
| |
Collapse
|
7
|
Vall-Sagarra A, Litau S, Decristoforo C, Wängler B, Schirrmacher R, Fricker G, Wängler C. Design, Synthesis, In Vitro, and Initial In Vivo Evaluation of Heterobivalent Peptidic Ligands Targeting Both NPY(Y₁)- and GRP-Receptors-An Improvement for Breast Cancer Imaging? Pharmaceuticals (Basel) 2018; 11:ph11030065. [PMID: 29973529 PMCID: PMC6161111 DOI: 10.3390/ph11030065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022] Open
Abstract
Heterobivalent peptidic ligands (HBPLs), designed to address two different receptors independently, are highly promising tumor imaging agents. For example, breast cancer has been shown to concomitantly and complementarily overexpress the neuropeptide Y receptor subtype 1 (NPY(Y1)R) as well as the gastrin-releasing peptide receptor (GRPR). Thus, radiolabeled HBPLs being able to bind these two receptors should exhibit an improved tumor targeting efficiency compared to monospecific ligands. We developed here such bispecific HBPLs and radiolabeled them with 68Ga, achieving high radiochemical yields, purities, and molar activities. We evaluated the HBPLs and their monospecific reference peptides in vitro regarding stability and uptake into different breast cancer cell lines and found that the 68Ga-HBPLs were efficiently taken up via the GRPR. We also performed in vivo PET/CT imaging and ex vivo biodistribution studies in T-47D tumor-bearing mice for the most promising 68Ga-HBPL and compared the results to those obtained for its scrambled analogs. The tumors could easily be visualized by the newly developed 68Ga-HBPL and considerably higher tumor uptakes and tumor-to-background ratios were obtained compared to the scrambled analogs in and ex vivo. These results demonstrate the general feasibility of the approach to use bispecific radioligands for in vivo imaging of breast cancer.
Collapse
Affiliation(s)
- Alicia Vall-Sagarra
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Clemens Decristoforo
- Department of Nuclear Medicine, University Hospital Innsbruck, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ralf Schirrmacher
- Department of Oncology, Division Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany.
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
8
|
Lindner S, Fiedler L, Wängler B, Bartenstein P, Schirrmacher R, Wängler C. Design, synthesis and in vitro evaluation of heterobivalent peptidic radioligands targeting both GRP- and VPAC1-Receptors concomitantly overexpressed on various malignancies – Is the concept feasible? Eur J Med Chem 2018; 155:84-95. [DOI: 10.1016/j.ejmech.2018.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
|
9
|
Maschauer S, Prante O. Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors. J Labelled Comp Radiopharm 2018; 61:309-325. [DOI: 10.1002/jlcr.3581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Maschauer
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine; Friedrich Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine; Friedrich Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| |
Collapse
|
10
|
Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors. Pharmaceuticals (Basel) 2017; 10:ph10010029. [PMID: 28287433 PMCID: PMC5374433 DOI: 10.3390/ph10010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial.
Collapse
|
11
|
Jia Y, Zhang W, Fan W, Brusnahan S, Garrison J. Investigation of the Biological Impact of Charge Distribution on a NTR1-Targeted Peptide. Bioconjug Chem 2016; 27:2658-2668. [PMID: 27661393 DOI: 10.1021/acs.bioconjchem.6b00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotensin receptor 1 (NTR1) has been shown to be a promising target, due to its increased level of expression relative to normal tissue, for pancreatic and colon cancers. This has prompted the development of a variety of NTR1-targeted radiopharmaceuticals, based on the neurotensin (NT) peptide, for diagnostic and radiotherapeutic applications. A major obstacle for the clinical translation of NTR1-targeted radiotherapeutics would likely be nephrotoxicity due to the high levels of kidney retention. It is well-known that for many peptide-based agents, renal uptake is influenced by the overall molecular charge. Herein, we investigated the effect of charge distribution on receptor binding and kidney retention. Using the [(N-α-Me)Arg8,Dmt11,Tle12]NT(6-13) targeting vector, three peptides (177Lu-K2, 177Lu-K4, and 177Lu-K6), with the Lys moved closer (K6) or further away (K2) from the pharmacophore, were synthesized. In vitro competitive binding, internalization and efflux, and confocal microscopy studies were conducted using the NTR1-positive HT-29, human colon cancer cell line. The 177/natLu-K6 demonstrated the highest binding affinity (21.8 ± 1.2 nM) and the highest level of internalization (4.06% ± 0.20% of the total added amount). In vivo biodistribution, autoradiography, and metabolic studies of 177Lu-radiolabeled K2, K4, and K6 were examined using CF-1 mice. 177Lu-K4 and 177Lu-K6 gave the highest levels of in vivo uptake in NTR1-positive tissues, whereas 177Lu-K2 yielded nearly 2-fold higher renal uptake relative to the other radioconjugates. In conclusion, the position of the Lys (positively charged amino acid) influences the receptor binding, internalization, in vivo NTR1-targeting efficacy, and kidney retention profile of the radioconjugates. In addition, we have found that hydrophobicity likely play a role in the unique biodistribution profiles of these agents.
Collapse
Affiliation(s)
- Yinnong Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Susan Brusnahan
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| | - Jered Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, ‡Center for Drug Delivery and Nanomedicine, §Department of Biochemistry and Molecular Biology, College of Medicine, and ∥Eppley Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska 985830, United States
| |
Collapse
|
12
|
Maschauer S, Einsiedel J, Hübner H, Gmeiner P, Prante O. 18F- and 68Ga-Labeled Neurotensin Peptides for PET Imaging of Neurotensin Receptor 1. J Med Chem 2016; 59:6480-92. [DOI: 10.1021/acs.jmedchem.6b00675] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jürgen Einsiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University (FAU), Schuhstraße 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University (FAU), Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University (FAU), Schuhstraße 19, 91052 Erlangen, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander University (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
13
|
Mascarin A, Valverde IE, Mindt TL. Radiolabeled analogs of neurotensin (8–13) containing multiple 1,2,3-triazoles as stable amide bond mimics in the backbone. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00208k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Substitution of multiple amide bonds by metabolically stable 1,2,3-triazoles yields novel tumour-targeting neurotensin-based peptidomimetics with interesting biological properties.
Collapse
Affiliation(s)
- Alba Mascarin
- Division of Radiopharmaceutical Chemistry
- University of Basel Hospital
- CH-4031 Basel
- Switzerland
| | - Ibai E. Valverde
- Division of Radiopharmaceutical Chemistry
- University of Basel Hospital
- CH-4031 Basel
- Switzerland
| | - Thomas L. Mindt
- Division of Radiopharmaceutical Chemistry
- University of Basel Hospital
- CH-4031 Basel
- Switzerland
- Ludwig Boltzmann Institute for Applied Diagnostics
| |
Collapse
|
14
|
Mascarin A, Valverde IE, Mindt TL. Structure-Activity Relationship Studies of Amino Acid Substitutions in Radiolabeled Neurotensin Conjugates. ChemMedChem 2015; 11:102-7. [PMID: 26593062 DOI: 10.1002/cmdc.201500468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/06/2022]
Abstract
Radiolabeled derivatives of the peptide neurotensin (NT) and its binding sequence NT(8-13) have been studied as potential imaging probes and therapeutics for NT-1-receptor-positive cancer. However, a direct comparison of reported NT analogues, even if radiolabeled with the same radionuclide, is difficult because different techniques and models have been used for preclinical evaluations. In an effort to identify a suitable derivative of NT(8-13) for radiotracer development, we herein report a side-by-side in vitro comparison of radiometallated NT derivatives bearing some of the most commonly reported amino acid substitutions in their sequence. Performed investigations include cell internalization experiments, determinations of receptor affinity, measurements of the distribution coefficient, and blood serum stability studies. Of the [(177)Lu]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-labeled examples studied, analogues of NT(8-13) containing a short hydrophilic tetraethylene glycol (PEG4 ) spacer between the peptide and the radiometal complex, and a minimum number of substitutions of amino acid residues, exhibited the most promising properties in vitro.
Collapse
Affiliation(s)
- Alba Mascarin
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Ibai E Valverde
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben 4, 4031, Basel, Switzerland. .,Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
15
|
Mascarin A, Valverde IE, Vomstein S, Mindt TL. 1,2,3-Triazole Stabilized Neurotensin-Based Radiopeptidomimetics for Improved Tumor Targeting. Bioconjug Chem 2015; 26:2143-52. [DOI: 10.1021/acs.bioconjchem.5b00444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alba Mascarin
- Division
of Radiopharmaceutical
Chemistry, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland
| | - Ibai E. Valverde
- Division
of Radiopharmaceutical
Chemistry, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division
of Radiopharmaceutical
Chemistry, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland
| | - Thomas L. Mindt
- Division
of Radiopharmaceutical
Chemistry, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
16
|
Jia Y, Shi W, Zhou Z, Wagh NK, Fan W, Brusnahan SK, Garrison JC. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting. Nucl Med Biol 2015; 42:816-23. [PMID: 26302836 DOI: 10.1016/j.nucmedbio.2015.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/25/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Neurotensin receptor 1 (NTR1) is overexpressed in many cancer types. Neurotensin (NT), a 13 amino acid peptide, is the native ligand for NTR1 and exhibits high (nM) affinity to the receptor. Many laboratories have been investigating the development of diagnostic and therapeutic radiopharmaceuticals for NTR1-positive cancers based on the NT peptide. To improve the biological performance for targeting NTR1, we proposed NT analogs with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelation system and different lengths of spacers. METHODS We synthesized four NTR1-targeted conjugates with spacer lengths from 0 to 9 atoms (null (N0), β-Ala-OH (N1), 5-Ava-OH (N2), and 8-Aoc-OH (N3)) between the DOTA and the pharmacophore. In vitro competitive binding, internalization and efflux studies were performed on all four NT analogs. Based on these findings, metabolism studies were carried out on our best performing conjugate, (177)Lu-N1. Lastly, in vivo biodistribution and SPECT/CT imaging studies were performed using (177)Lu-N1 in an HT-29 xenograft mouse model. RESULTS As shown in the competitive binding assays, the NT analogs with different spacers (N1, N2 and N3) exhibited lower IC50 values than the NT analog without a spacer (N0). Furthermore, N1 revealed higher retention in HT-29 cells with more rapid internalization and slower efflux than the other NT analogs. In vivo biodistribution and SPECT/CT imaging studies of (177)Lu-N1 demonstrated excellent accumulation (3.1 ± 0.4%ID/g) in the NTR1-positive tumors at 4h post-administration. CONCLUSIONS The DOTA chelation system demonstrated some modest steric inhibition of the pharmacophore. However, the insertion of a 4-atom hydrocarbon spacer group restored optimal binding affinity of the analog. The in vivo assays indicated that (177)Lu-N1 could be used for imaging and radiotherapy of NTR1-positive tumors.
Collapse
Affiliation(s)
- Yinnong Jia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Wen Shi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Zhengyuan Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Nilesh K Wagh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Wei Fan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Susan K Brusnahan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA, 68198-5830.
| |
Collapse
|
17
|
Deng H, Wang H, Wang M, Li Z, Wu Z. Synthesis and Evaluation of 64Cu-DOTA-NT-Cy5.5 as a Dual-Modality PET/Fluorescence Probe to Image Neurotensin Receptor-Positive Tumor. Mol Pharm 2015; 12:3054-61. [PMID: 26162008 DOI: 10.1021/acs.molpharmaceut.5b00325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Overexpression of neurotensin receptors (NTRs) has been suggested to play important roles in the growth and survival of a variety of tumor types. The aim of this study is to develop a dual-modality probe (64Cu -DOTA-NT-Cy5.5) for imaging NTR1 expression in vivo with both positron emission tomography (PET) and fluorescence. In this approach, the thiol group and N terminal amino group of neurotensin analogue (Cys-NT) were chemically modified with Cy5.5 dye and DOTA chelator, respectively. After radiolabeling with 64Cu, the resulting probe (64Cu-DOTA-NT-Cy5.5) was evaluated in NTR1 positive HT-29 tumor model. Small animal PET quantification analysis demonstrated that the tumor uptake was 1.91±0.22 and 1.79±0.16%ID/g at 1 and 4 h postinjection (p.i.), respectively. The tumor-to-muscle ratio was 17.44±3.25 at 4 h p.i. based on biodistribution. Receptor specificity was confirmed by the successful blocking experiment at 4 h p.i. (0.42±0.05%ID/g). In parallel with PET experiment, fluorescence imaging was also performed, which demonstrated prominent tumor uptake in HT-29 model. As a proof of concept, an imaging guided surgery was performed to the fluorescent moiety of this probe and could provide potential surgery guidance for NTR positive patients. In summary, our results clearly indicated that the dual-modality probe, 64Cu-DOTA-NT-Cy5.5, could serve as a promising agent to image NTR positive tumors in vivo.
Collapse
Affiliation(s)
- Huaifu Deng
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,‡PET/CT Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, China
| | - Hui Wang
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mengzhe Wang
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zibo Li
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- †Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Maschauer S, Greff C, Einsiedel J, Ott J, Tripal P, Hübner H, Gmeiner P, Prante O. Improved radiosynthesis and preliminary in vivo evaluation of a 18F-labeled glycopeptide–peptoid hybrid for PET imaging of neurotensin receptor 2. Bioorg Med Chem 2015; 23:4026-33. [DOI: 10.1016/j.bmc.2015.01.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 12/14/2022]
|
19
|
Litau S, Seibold U, Vall-Sagarra A, Fricker G, Wängler B, Wängler C. Comparative Assessment of Complex Stabilities of Radiocopper Chelating Agents by a Combination of Complex Challenge and in vivo Experiments. ChemMedChem 2015; 10:1200-8. [PMID: 26011290 DOI: 10.1002/cmdc.201500132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 12/12/2022]
Abstract
For (64) Cu radiolabeling of biomolecules to be used as in vivo positron emission tomography (PET) imaging agents, various chelators are commonly applied. It has not yet been determined which of the most potent chelators--NODA-GA ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid), CB-TE2A (2,2'-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl)diacetic acid), or CB-TE1A-GA (1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl-8-acetic acid-1-glutaric acid)--forms the most stable complexes resulting in PET images of highest quality. We determined the (64) Cu complex stabilities for these three chelators by a combination of complex challenge and an in vivo approach. For this purpose, bioconjugates of the chelating agents with the gastrin-releasing peptide receptor (GRPR)-affine peptide PESIN and an integrin αv β3 -affine c(RGDfC) tetramer were synthesized and radiolabeled with (64) Cu in excellent yields and specific activities. The (64) Cu-labeled biomolecules were evaluated for their complex stabilities in vitro by conducting a challenge experiment with the respective other chelators as challengers. The in vivo stabilities of the complexes were also determined, showing the highest stability for the (64) Cu-CB-TE1A-GA complex in both experimental setups. Therefore, CB-TE1A-GA is the most appropriate chelating agent for *Cu-labeled radiotracers and in vivo imaging applications.
Collapse
Affiliation(s)
- Shanna Litau
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany).,Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany)
| | - Uwe Seibold
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany).,Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany)
| | - Alicia Vall-Sagarra
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany)
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg (Germany)
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany).
| |
Collapse
|
20
|
Körner M, Waser B, Strobel O, Büchler M, Reubi JC. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res 2015; 5:17. [PMID: 25859423 PMCID: PMC4388205 DOI: 10.1186/s13550-015-0094-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The frequent expression of neurotensin receptors (NT-R) in primaries of pancreatic ductal carcinomas has triggered the development of radioactive neurotensin analogs for possible in vivo targeting of these tumors. However, the complete lack of information regarding NT-R in liver metastases of pancreatic cancer and pancreatic intraepithelial neoplasia (PanIN) makes an in vitro study of NT-R in these tissues indispensable. METHODS Using in vitro receptor autoradiography with (125)I-[Tyr(3)]-neurotensin, NT-R were investigated in 18 primaries and 23 liver metastases of pancreatic ductal carcinomas as well as in 19 PanIN lesions. RESULTS We report here that 13 of 18 ductal carcinoma primaries and 14 of 23 liver metastases expressed NT-R. Moreover, none of the six PanIN 1B cases expressed NT-R, while two of six PanIN 2 and five of seven PanIN 3 expressed NT-R. Binding was fully displaced by the type 1 NT-R-selective antagonist SR48692, indicating that the NT-R in the tumors are of the type 1 NT-R subtype. CONCLUSIONS These in vitro data extend the currently available information on NT-R in invasive and non-invasive pancreatic ductal tumors. They suggest that type 1 NT-R may be a novel, specific marker of PanIN of higher degree. The high expression of NT-R in primaries and metastases of invasive cancer strongly support the need to develop radioactive neurotensin analogs for the diagnosis and therapy of this tumor type.
Collapse
Affiliation(s)
- Meike Körner
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, PO Box 62, Murtenstrasse 31, CH-3010 Berne, Switzerland
| | - Beatrice Waser
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, PO Box 62, Murtenstrasse 31, CH-3010 Berne, Switzerland
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jean Claude Reubi
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, PO Box 62, Murtenstrasse 31, CH-3010 Berne, Switzerland
| |
Collapse
|
21
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
22
|
Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J Med Chem 2014; 57:9718-39. [DOI: 10.1021/jm5010896] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chiara Cabrele
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Tamás A. Martinek
- SZTE-MTA
Lendulet Foldamer Research Group, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 6., H-6720 Szeged, Hungary
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
23
|
Schaab C, Kling RC, Einsiedel J, Hübner H, Clark T, Seebach D, Gmeiner P. Structure-based evolution of subtype-selective neurotensin receptor ligands. ChemistryOpen 2014; 3:206-18. [PMID: 25478316 PMCID: PMC4234217 DOI: 10.1002/open.201402031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 11/08/2022] Open
Abstract
Subtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure-activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8-13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8-13), we replaced the tyrosine unit by β(2)-amino acids (type 1), by heterocyclic tyrosine bioisosteres (type 2) and peptoid analogues (type 3). We were able to evolve an asymmetric synthesis of a 5-substituted azaindolylalanine and its application as a bioisostere of tyrosine capable of enhancing NTS2 selectivity. The S-configured test compound 2 a, [(S)-3-(pyrazolo[1,5-a]pyridine-5-yl)-propionyl(11)]NT(8-13), exhibits substantial NTS2 affinity (4.8 nm) and has a nearly 30-fold NTS2 selectivity over NTS1. The (R)-epimer 2 b showed lower NTS2 affinity but more than 600-fold selectivity over NTS1.
Collapse
Affiliation(s)
- Carolin Schaab
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| | - Ralf Christian Kling
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail: ; Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University Nägelsbachstraße 25, 91052 Erlangen (Germany)
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| | - Tim Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University Nägelsbachstraße 25, 91052 Erlangen (Germany)
| | - Dieter Seebach
- Departement of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University Schuhstraße 19, 91052 Erlangen (Germany) E-mail:
| |
Collapse
|