1
|
Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, Sulaiman M. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023; 28:molecules28093873. [PMID: 37175283 PMCID: PMC10180233 DOI: 10.3390/molecules28093873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Geethanjali Kathirvalu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Veeranoot Nissapatorn
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Nor Azizun Rusdi
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Zhou L, He QJ, Lu LW, Zhao F, Zhang Y, Huang XX, Lin B, Song SJ. Tripterfordins A-O, Dihydro-β-agarofuran Sesquiterpenoids from the Leaves of Tripterygium wilfordii. JOURNAL OF NATURAL PRODUCTS 2019; 82:2696-2706. [PMID: 31556299 DOI: 10.1021/acs.jnatprod.9b00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fifteen new dihydro-β-agarofuran-type sesquiterpenoids, tripterfordins A-O, were obtained from the aqueous EtOH extracts of the leaves of Tripterygium wilfordii. These constituted a class of highly oxygenated tricyclic sesquiterpenoid polyesters with a cinnamoyloxy group at C-1. The assignments of their structures were conducted via extensive analyses of the spectroscopic data and comparison of experimental and calculated ECD data. The absolute configurations of compounds 1, 4, 9, and 10 were established via single-crystal X-ray diffraction data. Additionally, compounds 1, 4, 9, 10, and 13 exhibited pronounced inhibitory effects on nitric oxide production in RAW 264.7 murine macrophages stimulated by lipopolysaccharide with IC50 values ranging from 11.9 to 31.0 μM.
Collapse
Affiliation(s)
| | | | | | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy , Yantai University , Yantai 264005 , People's Republic of China
| | | | | | | | | |
Collapse
|
3
|
Zhang XW, Wang KW, Zhou MQ. Cytotoxic Triterpenoids from the Stalks of Microtropis triflora. Chem Biodivers 2017; 14. [PMID: 28434194 DOI: 10.1002/cbdv.201700066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/19/2017] [Indexed: 11/07/2022]
Abstract
Bioassay-guided phytochemical investigation of the stalks of Microtropis triflora Merr. & F.L. Freeman led to the isolation of ten triterpenes 1 - 10, including one novel compound 3,24-epoxy-2α,24-dihydroxyfriedelan-29-oic acid (1). Their chemical structures were identified on the basis of spectroscopic analysis, including HR-ESI mass spectrometry, 1D- and 2D-NMR (1 H, 13 C, 1 H,1 H-COSY, HSQC, HMBC, and NOESY), and by comparison with the data reported. The cytotoxicities of compounds 1 - 10 against a panel of cultured human tumor cell lines (Bcap37, SMMC7721, HeLa, CNE) were evaluated. The new compound 1 showed moderate anti-tumor activities with IC50 values of 39.22, 29.24, 23.28, and 68.81 μm/ml, respectively. These results might be helpful for explaining the use of M. triflora in traditional medicine. Triterpenes are characteristic of Microtropis genus and could be useful as potential chemotaxonomic markers.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- Department of Food Science and Nutrition, University of Jinan, Jinan, 250022, P. R. China
| | - Kui-Wu Wang
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Man-Qing Zhou
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| |
Collapse
|