1
|
Khan MAR, Wang BW, Lin HC, Yang YL, Liaw CC. Structure-Functional Activity of Pyrone Derivatives for Inhibition of Barnacle Settlement and Biofilm Formation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1000-1008. [PMID: 39066983 DOI: 10.1007/s10126-024-10349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Naturally occurring 6-pentyl-2H-pyran-2-one and its synthetic analogues greatly inhibit the settlement of Amphibalanus amphitrite cyprids and the growth and biofilm formation of marine bacteria. To optimize the antifouling activities of pyrone derivatives, this study designed pyrone analogues by modifying functional groups, such as the benzyl group, cyclopentane, and halides, substituted on both sides of a pyrone. The antifouling effects of the synthesized pyrone derivatives were subsequently evaluated against five marine biofilm-forming bacteria, Loktanella hongkongensis, Staphylococcus cohnii, S. saprophyticus, Photobacterium angustum, and Alteromonas macleodii, along with barnacle cyprids of Amphibalanus amphitrite. Substituting nonpolar parts-such as the aliphatic, cyclopentyl, or phenyl moieties on C-5 or the furan moieties on C-3-not only increased antibacterial activity and inhibited biofilm formation but also inhibited barnacle cyprid settlement when compared to 6-pentyl-2H-pyran-2-one.
Collapse
Affiliation(s)
- Mo Aqib Raza Khan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Bo-Wei Wang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711, Taiwan
| | - Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, 711, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Zhu S, Xu TC, Huang R, Gao Y, Wu SH. Four new polyketides from an endophytic fungus Talaromyces muroii. Fitoterapia 2024; 177:106073. [PMID: 38897246 DOI: 10.1016/j.fitote.2024.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
In our continuous work on the isolation of endophytes, the endophytic fungal strain YIMF00209 was obtained from the roots of Gmelina arborea, which is an ethnic medicinal plant mainly distributed in Southeast Asia. The fermentation extracts of the strain exhibited significant antimicrobial activities against Staphylococcus aureus, Fusarium solani, and Escherichia coli. Based on morphological characteristics and phylogenetic analysis, it was identified as Talaromyces muroii. Four new polyketides, talaromurolides A-D (1-4), along with 26 known compounds (5-30), were isolated from the culture broth of the strain in two different media. Their structures were identified based on HRESIMS, NMR, and CD spectral data. Among them, compounds 2, 4-6, 19, 22, 24, 27, 28, and 30 were isolated from the fermentation broth in CYM medium; compounds 1, 3, 7-18, 20, 21, 23, 25, 26, and 29 were obtained from the fermentation broth in PDB medium; and compounds 2, 5, and 30 were existed in both two media. Compounds 6-9, 12, 16, 20, 21, 23, 25, and 29 were obtained from the genus Talaromyces for the first time. The antimicrobial activities of several compounds were assayed against six pathogens. Compound 1 exhibited inhibitory activities against S. aureus, E. coli, Candida albicans, Salmonella typhimurium, and Botrytis cinerea with MIC value of 64 μg/mL. Compound 25 exhibited antibacterial activity against E. coli with MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Sha Zhu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Tang-Chang Xu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Rong Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan Gao
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shao-Hua Wu
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
3
|
Salvatore MM, Nicoletti R, Fiorito F, Andolfi A. Penicillides from Penicillium and Talaromyces: Chemical Structures, Occurrence and Bioactivities. Molecules 2024; 29:3888. [PMID: 39202967 PMCID: PMC11356976 DOI: 10.3390/molecules29163888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Penicillide is the founder product of a class of natural products of fungal origin. Although this compound and its analogues have been identified from taxonomically heterogeneous fungi, they are most frequently and typically reported from the species of Talaromyces and Penicillium. The producing strains have been isolated in various ecological contexts, with a notable proportion of endophytes. The occurrence of penicillides in these plant associates may be indicative of a possible role in defensive mutualism based on their bioactive properties, which are also reviewed in this paper. The interesting finding of penicillides in fruits and seeds of Phyllanthus emblica is introductory to a new ground of investigation in view of assessing whether they are produced by the plant directly or as a result of the biosynthetic capacities of some endophytic associates.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy; (M.M.S.); (A.A.)
| | - Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, 80137 Naples, Italy;
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy; (M.M.S.); (A.A.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80138 Naples, Italy
| |
Collapse
|
4
|
Liang X, Chen W, Jiang B, Xiao CJ. Dibenzofurans from nature: Biosynthesis, structural diversity, sources, and bioactivities. Bioorg Chem 2024; 144:107107. [PMID: 38218069 DOI: 10.1016/j.bioorg.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Dibenzofurans are a small class of natural products with versatile biological activities that used to be thought to come mainly from lichens and ascomycetes. In fact, they are also distributed widely in higher plants, especially in the families Rosaceae and Myrtaceae. Dibenzofurans and derivatives from lichens and ascomycetes have been well reviewed, but dibenzofurans from all biological sources in nature have not been reviewed. In this review, dibenzofurans from all natural sources have been comprehensively reviewed, and a total of 211 dibenzofurans isolated and identified from organisms between 1843 and March 2023 are categorized and discussed, including their biosynthesis, structural diversity, sources, and bioactivities.
Collapse
Affiliation(s)
- Xin Liang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China
| | - Wei Chen
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China; Institute of Materia Medica & College of Pharmacy, Dali University, Dali 671000, China.
| |
Collapse
|
5
|
Lv H, Su H, Xue Y, Jia J, Bi H, Wang S, Zhang J, Zhu M, Emam M, Wang H, Hong K, Li XN. Polyketides with potential bioactivities from the mangrove-derived fungus Talaromyces sp. WHUF0362. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:232-241. [PMID: 37275544 PMCID: PMC10232383 DOI: 10.1007/s42995-023-00170-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/12/2023] [Indexed: 06/07/2023]
Abstract
Metabolites of microorganisms have long been considered as potential sources for drug discovery. In this study, five new depsidone derivatives, talaronins A-E (1-5) and three new xanthone derivatives, talaronins F-H (6-8), together with 16 known compounds (9-24), were isolated from the ethyl acetate extract of the mangrove-derived fungus Talaromyces species WHUF0362. The structures were elucidated by analysis of spectroscopic data and chemical methods including alkaline hydrolysis and Mosher's method. Compounds 1 and 2 each attached a dimethyl acetal group at the aromatic ring. A putative biogenetic relationship of the isolated metabolites was presented and suggested that the depsidones and the xanthones probably had the same biosynthetic precursors such as chrysophanol or rheochrysidin. The antimicrobial activity assay indicated that compounds 5, 9, 10, and 14 showed potent activity against Helicobacter pylori with minimum inhibitory concentration (MIC) values in the range of 2.42-36.04 μmol/L. While secalonic acid D (19) demonstrated significant antimicrobial activity against four strains of H. pylori with MIC values in the range of 0.20 to 1.57 μmol/L. Furthermore, secalonic acid D (19) exhibited cytotoxicity against cancer cell lines Bel-7402 and HCT-116 with IC50 values of 0.15 and 0.19 μmol/L, respectively. The structure-activity relationship of depsidone derivatives revealed that the presence of the lactone ring and the hydroxyl at C-10 was crucial to the antimicrobial activity against H. pylori. The depsidone derivatives are promising leads to inhibit H. pylori and provide an avenue for further development of novel antibiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00170-5.
Collapse
Affiliation(s)
- Huawei Lv
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Haibo Su
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yaxin Xue
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072 China
| | - Jia Jia
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, 211166 China
| | - Hongkai Bi
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, 211166 China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Target Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100700 China
| | - Jinkun Zhang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mengdi Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014 China
- Department of Phytochemistry and Plant Systematics, National Research Centre, Giza, Egypt
| | - Hong Wang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Kui Hong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072 China
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
6
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
7
|
Chen Y, Pang X, He Y, Lin X, Zhou X, Liu Y, Yang B. Secondary Metabolites from Coral-Associated Fungi: Source, Chemistry and Bioactivities. J Fungi (Basel) 2022; 8:1043. [PMID: 36294608 PMCID: PMC9604832 DOI: 10.3390/jof8101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
Our study of the secondary metabolites of coral-associated fungi produced a valuable and extra-large chemical database. Many of them exhibit strong biological activity and can be used for promising drug lead compounds. Serving as an epitome of the most promising compounds, which take the ultra-new skeletons and/or remarkable bioactivities, this review presents an overview of new compounds and bioactive compounds isolated from coral-associated fungi, covering the literature from 2010 to 2021. Its scope included 423 metabolites, focusing on the bioactivity and structure diversity of these compounds. According to structure, these compounds can be roughly classified as terpenes, alkaloids, peptides, aromatics, lactones, steroids, and other compounds. Some of them described in this review possess a wide range of bioactivities, such as anticancer, antimicrobial, antifouling, and other activities. This review aims to provide some significant chemical and/or biological enlightenment for the study of marine natural products and marine drug development in the future.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanchun He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
8
|
Singh KS, Singh A. Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Lei LR, Gong LQ, Jin MY, Wang R, Liu R, Gao J, Liu MD, Huang L, Wang GZ, Wang D, Deng Y. Research advances in the structures and biological activities of secondary metabolites from Talaromyces. Front Microbiol 2022; 13:984801. [PMID: 36060779 PMCID: PMC9437523 DOI: 10.3389/fmicb.2022.984801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The genus Talaromyces belongs to the phylum Ascomycota of the kingdom Fungi. Studies have shown that Talaromyces species yield many kinds of secondary metabolites, including esters, terpenes, steroids, alkaloids, polyketides, and anthraquinones, some of which have biological activities such as anti-inflammatory, bacteriostatic, and antitumor activities. The chemical constituents of fungi belonging to the genus Talaromyces that have been studied by researchers over the past several years, as well as their biological activities, are reviewed here to provide a reference for the development of high-value natural products and innovative uses of these resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dong Wang
- State Key Laboratory of Characteristic Chinese Medicine Resource of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Deng
- State Key Laboratory of Characteristic Chinese Medicine Resource of Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zhang H, Lei XX, Shao S, Zhou X, Li Y, Yang B. Azaphilones and Meroterpenoids from the Soft Coral-Derived Fungus Penicillium glabrum glmu003. Chem Biodivers 2021; 18:e2100663. [PMID: 34519434 DOI: 10.1002/cbdv.202100663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Two new azaphilone compounds, daldinins G (1) and H (2), together with nine known compounds daldinin D (3), sargassopenilline B (4), austalide V (5), austalide K (6), austalide P (7), austalide P acid (8), austalide H (9), 13-O-deacetyaustalide I (10), and 17-O-demethylaustalide B (11), were isolated from the soft coral-derived fungus Penicillium glabrum glmu003. The new structures of 1 and 2 were elucidated on the basis of 1D and 2D NMR, mass spectra, and electronic circular dichroism (ECD) data analysis. Compound 5 showed weak inhibitory activity against pancreatic lipase (PL) with IC50 value of 23.9 μg/mL.
Collapse
Affiliation(s)
- Han Zhang
- Pharmacy School of Guilin Medical University, Guilin, 541004, China
| | - Xin-Xin Lei
- Pharmacy School of Guilin Medical University, Guilin, 541004, China
| | - Surun Shao
- Pharmacy School of Guilin Medical University, Guilin, 541004, China
| | - Xuefeng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yunqiu Li
- Pharmacy School of Guilin Medical University, Guilin, 541004, China
| | - Bin Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
11
|
de Sá JDM, Pereira JA, Dethoup T, Cidade H, Sousa ME, Rodrigues IC, Costa PM, Mistry S, Silva AMS, Kijjoa A. Anthraquinones, Diphenyl Ethers, and Their Derivatives from the Culture of the Marine Sponge-Associated Fungus Neosartorya spinosa KUFA 1047. Mar Drugs 2021; 19:md19080457. [PMID: 34436296 PMCID: PMC8401666 DOI: 10.3390/md19080457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Previously unreported anthraquinone, acetylpenipurdin A (4), biphenyl ether, neospinosic acid (6), dibenzodioxepinone, and spinolactone (7) were isolated, together with (R)-6-hydroxymellein (1), penipurdin A (2), acetylquestinol (3), tenellic acid C (5), and vermixocin A (8) from the culture of a marine sponge-associated fungus Neosartorya spinosa KUFA1047. The structures of the previously unreported compounds were established based on an extensive analysis of 1D and 2D NMR spectra as well as HRMS data. The absolute configurations of the stereogenic centers of 5 and 7 were established unambiguously by comparing their calculated and experimental electronic circular dichroism (ECD) spectra. Compounds 2 and 5–8 were tested for their in vitro acetylcholinesterase and tyrosinase inhibitory activities as well as their antibacterial activity against Gram-positive and Gram-negative reference, and multidrug-resistant strains isolated from the environment. The tested compounds were also evaluated for their capacity to inhibit biofilm formation in the reference strains.
Collapse
Affiliation(s)
- Joana D. M. de Sá
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.D.M.d.S.); (H.C.); (M.E.S.)
| | - José A. Pereira
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.A.P.); (I.C.R.); (P.M.C.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand;
| | - Honorina Cidade
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.D.M.d.S.); (H.C.); (M.E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Maria Emília Sousa
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.D.M.d.S.); (H.C.); (M.E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Inês C. Rodrigues
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.A.P.); (I.C.R.); (P.M.C.)
| | - Paulo M. Costa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.A.P.); (I.C.R.); (P.M.C.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Sharad Mistry
- Department of Chemistry, University of Leicester, University Road, Leicester LE 7RH, UK;
| | - Artur M. S. Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.A.P.); (I.C.R.); (P.M.C.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: ; Tel.: +351-22-042-8331; Fax: +351-22-206-2232
| |
Collapse
|
12
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
13
|
Liu LL, Wu CH, Qian PY. Marine natural products as antifouling molecules - a mini-review (2014-2020). BIOFOULING 2020; 36:1210-1226. [PMID: 33401982 DOI: 10.1080/08927014.2020.1864343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In the present review, 182 antifouling (AF) natural products from marine microorganisms, algae and marine invertebrates reported from August 2014 to May 2020 are presented. Amongst these compounds, over half were isolated from marine-derived microorganisms, including 70 compounds from fungi and 31 compounds from bacteria. The structure-relationship of some of these compounds is also briefly discussed. Based on the work reported, a general workflow was drafted to refine the procedures for the commercialization of any novel AF compounds. Finally, butenolide, which is considered a potential environmentally friendly antifoulant, is used as a case study to show the procedures involved in AF compound work from the aspect of discovery, structure optimization, toxicity, stability, AF mechanism and coating incorporation, which highlight the current challenges and future perspectives in AF compound research.
Collapse
Affiliation(s)
- Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuan-Hai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
14
|
Diversity and Antimicrobial Activity of Culturable Fungal Endophytes in Solanum mauritianum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020439. [PMID: 31936472 PMCID: PMC7013891 DOI: 10.3390/ijerph17020439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
Plant endophytes are microbial sources of bioactive secondary metabolites, which mimic the natural compounds chemistry of their respective host plants in a similar manner. This study explored the isolation and identification of fungal endophytes, and investigated the antibacterial and antimycobacterial activity of their crude extracts. Fungal endophytes were isolated from Solanum mauritianum, identified using morphological traits and internal transcribed spacer ribosomal-deoxyribonucleic acid (ITS-rDNA) sequence analysis. Eight fungal endophytes were identified as Aureobasidium pullulans, Paracamarosporium leucadendri, Cladosporium sp., Collectotrichum boninense, Fusarium sp., Hyalodendriella sp., and Talaromyces sp., while Penicillium chrysogenum was isolated from the leaves and unripe fruits. Good activity was observed for the crude extracts of Paracamarosporium leucadendri inhibiting Mycobacterium bovis, Klebsiella pneumoniae, and Pseudomonas aeruginosa at 6 µg/mL. Crude extracts of Fusarium sp., showed activity at 9 μg/mL against M. bovis, M. smegmatis and K. pneumonia. In general, the crude extracts showed great activity against Gram-negative and Gram-positive bacteria and novel results for two mycobacteria species M. bovis and M. smegmatis. The results provide evidence of diverse fungal endophytes isolated from Solanum mauritianum, and evidence that fungal endophytes are a good source of bioactive compounds with pharmaceutical potential, particularly against Mycobacterium tuberculosis.
Collapse
|
15
|
Liu Z, Frank M, Yu X, Yu H, Tran-Cong NM, Gao Y, Proksch P. Secondary Metabolites from Marine-Derived Fungi from China. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2020; 111:81-153. [PMID: 32114663 DOI: 10.1007/978-3-030-37865-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marine-derived fungi play an important role in the search for structurally unique secondary metabolites, some of which show promising pharmacological activities that make them useful leads for drug discovery. Marine natural product research in China in general has made enormous progress in the last two decades as described in this chapter on fungal metabolites. This contribution covers 613 new natural products reported from 2001 to 2017 from marine-derived fungi obtained from algae, sponges, corals, and other marine organisms from Chinese waters. The genera Aspergillus (170 new natural products, 28%) and Penicillium (70 new natural products, 11%) were the main fungal producers of new natural products during the time period covered, whereas sponges (184 new natural products, 30%) were the most abundant source of new natural products, followed by corals (154 new natural products, 25%) and algae (130 new natural products, 21%). Close to 40% of all natural products covered in this contribution displayed various bioactivities. The major bioactivities reported were cytotoxicity against different cancer cell lines, antimicrobial (mainly antibacterial) activity, and antiviral activity, which accounted for 13%, 9%, and 3% of all natural products reported. In terms of structural classes, polyketides (188 new natural products, 31%) play a dominant role, and if prenylated polyketides and nitrogen-containing polyketides (included in meroterpenes and alkaloids in this contribution) are taken into account, their total number even exceeds 50%. Nitrogen-containing compounds including peptides (65 new natural products, 10%) and alkaloids (103 new natural products, 17%) are the second largest group.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Xiaoqin Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nam M Tran-Cong
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. World J Microbiol Biotechnol 2018; 34:90. [DOI: 10.1007/s11274-018-2470-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/03/2018] [Indexed: 11/26/2022]
|
17
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
18
|
Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi. Mar Drugs 2016; 14:md14040076. [PMID: 27110799 PMCID: PMC4849080 DOI: 10.3390/md14040076] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 11/16/2022] Open
Abstract
In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed.
Collapse
|
19
|
Bai H, Kong WW, Shao CL, Li Y, Liu YZ, Liu M, Guan FF, Wang CY. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:264-270. [PMID: 26838966 DOI: 10.1007/s10126-016-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.
Collapse
Affiliation(s)
- Hong Bai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Wen Kong
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Guangzhou Baiyunshan Baidi Bio-Technology CO., LTD, Guangzhou, 511495, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Yun Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yun-Zhang Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Min Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Fei-Fei Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Nicoletti R, Trincone A. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Mar Drugs 2016; 14:md14020037. [PMID: 26901206 PMCID: PMC4771990 DOI: 10.3390/md14020037] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy.
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy.
| |
Collapse
|
21
|
Xie XS, Fang XW, Huang R, Zhang SP, Wei HX, Wu SH. A new dimeric anthraquinone from endophytic Talaromyces sp. YE3016. Nat Prod Res 2016; 30:1706-11. [PMID: 26815015 DOI: 10.1080/14786419.2015.1136888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new unsymmetrical dimeric anthraquinone, 3-demethyl-3-(2-hydroxypropyl)-skyrin (1) was isolated from the solid-state fermentation extract of an endophytic fungal strain Talaromyces sp. YE 3016, together with five known compounds, skyrin (2), oxyskyrin (3), emodin (4), 1,3,6-trihydroxy-8-methyl-anthraquinone (5) and ergosterol (6). The structure of the new compound was elucidated on the basis of spectroscopic analysis. Compounds 1-3 exhibited moderate cytotoxic activities against MCF-7 cell line.
Collapse
Affiliation(s)
- Xiao-Song Xie
- a Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology , Yunnan University , Kunming , P.R. China
| | - Xiao-Wei Fang
- a Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology , Yunnan University , Kunming , P.R. China
| | - Rong Huang
- b School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| | - Shou-Peng Zhang
- a Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology , Yunnan University , Kunming , P.R. China
| | - Hong-Xia Wei
- a Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology , Yunnan University , Kunming , P.R. China
| | - Shao-Hua Wu
- a Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology , Yunnan University , Kunming , P.R. China
| |
Collapse
|
22
|
Daengrot C, Rukachaisirikul V, Tadpetch K, Phongpaichit S, Bowornwiriyapan K, Sakayaroj J, Shen X. Penicillanthone and penicillidic acids A–C from the soil-derived fungus Penicillium aculeatum PSU-RSPG105. RSC Adv 2016. [DOI: 10.1039/c6ra04401h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new xanthone (penicillanthone, 1) and three new diphenyl ether derivatives (penicillidic acids A–C, 2–4) together with 14 known compounds (5–18) were isolated from the soil-derived fungus Penicillium aculeatum PSU-RSPG105.
Collapse
Affiliation(s)
- Charuwan Daengrot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Vatcharin Rukachaisirikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Kwanruthai Tadpetch
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Souwalak Phongpaichit
- Natural Products Research Center of Excellence and Department of Microbiology
- Faculty of Science
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Kawitsara Bowornwiriyapan
- Natural Products Research Center of Excellence and Department of Microbiology
- Faculty of Science
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Jariya Sakayaroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC)
- Pathum Thani 12120
- Thailand
| | - Xu Shen
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
23
|
Wu C, Zhao Y, Chen R, Liu D, Liu M, Proksch P, Guo P, Lin W. Phenolic metabolites from mangrove-associated Penicillium pinophilum fungus with lipid-lowering effects. RSC Adv 2016. [DOI: 10.1039/c6ra00033a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chemical examination of the mangrove-associated fungusPenicillium pinophilum(H608) resulted in isolation of 16 phenolic metabolites, including a new metabolite, namely 5′-hydroxypenicillide (1).
Collapse
Affiliation(s)
- Chongming Wu
- Pharmacology and Toxicology Research Center
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- P. R. China
| | - Ran Chen
- Pharmacology and Toxicology Research Center
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- P. R. China
| | - Mingyue Liu
- Pharmacology and Toxicology Research Center
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
| | - Peter Proksch
- Institute für Pharmazeutische Biologie und Biotechnologie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Peng Guo
- Pharmacology and Toxicology Research Center
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing 100191
- P. R. China
| |
Collapse
|