1
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Aziz M, Abdel-Rahman HM. Quinazoline-chalcone hybrids as HDAC/EGFR dual inhibitors: Design, synthesis, mechanistic, and in-silico studies of potential anticancer activity against multiple myeloma. Arch Pharm (Weinheim) 2024; 357:e2300626. [PMID: 38297894 DOI: 10.1002/ardp.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut, Egypt
| |
Collapse
|
2
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
3
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
4
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Hasan AH, Shakya S, Hussain FHS, Murugesan S, Chander S, Pratama MRF, Jamil S, Das B, Biswas S, Jamalis J. Design, synthesis, anti-acetylcholinesterase evaluation and molecular modelling studies of novel coumarin-chalcone hybrids. J Biomol Struct Dyn 2023; 41:11450-11462. [PMID: 36591704 DOI: 10.1080/07391102.2022.2162583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
The major enzyme responsible for the hydrolytic breakdown of the neurotransmitter acetylcholine (ACh) is acetylcholinesterase (AChE). Acetylcholinesterase inhibitors (AChEIs) are the most prescribed class of medications for the treatment of Alzheimer's disease (AD) and dementia. The limitations of available therapy, like side effects, drug tolerance, and inefficacy in halting disease progression, drive the need for better, more efficacious, and safer drugs. In this study, a series of fourteen novel chalcone-coumarin derivatives (8a-n) were designed, synthesized and characterized by spectral techniques like FT-IR, NMR, and HR-MS. Subsequently, the synthesized compounds were tested for their ability to inhibit acetylcholinesterase (AChE) activity by Ellman's method. All tested compounds showed AChE inhibition with IC50 value ranging from 0.201 ± 0.008 to 1.047 ± 0.043 μM. Hybrid 8d having chloro substitution on ring-B of the chalcone scaffold showed relatively better potency, with IC50 value of 0.201 ± 0.008 μM compared to other members of the series. The reference drug, galantamine, exhibited an IC50 at 1.142 ± 0.027 μM. Computational studies revealed that designed compounds bind to the peripheral anionic site (PAS), the catalytic active site (CAS), and the mid-gorge site of AChE. Putative binding modes, ligand-enzyme interactions, and stability of the best active compound are studied using molecular docking, followed by molecular dynamics (MD) simulations. The cytotoxicity of the synthesised derivatives was determined using the MTT test at three concentrations (100 g/mL, 500 g/mL, and 1 mg/mL). None of the chemicals had a significant effect on the body at the highest dose of 1 mg/mL.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aso Hameed Hasan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Science, University of Garmian, Kalar, Kurdistan Region-Iraq, Iraq
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faiq H S Hussain
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region-Iraq, Iraq
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, Rajasthan, India
| | - Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mohammad Rizki Fadhil Pratama
- Doctoral Program of Pharmaceutical Sciences, Universitas Airlangga, Surabaya, East Java, Indonesia
- Department of Pharmacy, Universitas Muhammadiyah Palangkaraya, Palangka Raya, Central Kalimantan, Indonesia
| | - Shajarahtunnur Jamil
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Basundhara Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Translational Cancer & Stem Cell Research Laboratory, Noida, Uttar Pradesh, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Translational Cancer & Stem Cell Research Laboratory, Noida, Uttar Pradesh, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
6
|
Burmaoglu S, Akin Kazancioglu E, Kazancioglu MZ, Alagoz MA, Dogen A, Algul O. Synthesis, In Vitro Biological Evaluation, and Molecular Docking Studies of Novel Biphenyl Chalcone Derivatives as Antimicrobial Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1962925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Elif Akin Kazancioglu
- Vocational High School of Health Services, Kilis 7 Aralik University, Kilis, Turkey
- Advanced Technology Application and Research Center, Kilis 7 Aralik University, Kilis, Turkey
| | - Mustafa Z. Kazancioglu
- Advanced Technology Application and Research Center, Kilis 7 Aralik University, Kilis, Turkey
- Yusuf Serefoglu Faculty of Health Sciences, Kilis 7 Aralik University, Kilis, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Aylin Dogen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
7
|
Rehuman NA, Mathew B, Jat RK, Nicolotti O, Kim H. A Comprehensive Review of Monoamine Oxidase-A Inhibitors in their Syntheses and Potencies. Comb Chem High Throughput Screen 2021; 23:898-914. [PMID: 32342809 DOI: 10.2174/1386207323666200428091306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidases (MAOs) play a crucial role during the development of various neurodegenerative disorders. There are two MAO isozymes, MAO-A and MAO-B. MAO-A is a flavoenzyme, which binds to the outer mitochondrial membrane and catalyzes the oxidative transformations of neurotransmitters like serotonin, norepinephrine, and dopamine. MATERIALS AND METHODS Focus on synthetic studies has culminated in the preparation of many MAOA inhibitors, and advancements in combinatorial and parallel synthesis have accelerated the developments of synthetic schemes. Here, we provided an overview of the synthetic protocols employed to prepare different classes of MAO-A inhibitors. We classified these inhibitors according to their molecular scaffolds and the synthetic methods used. RESULTS Various synthetic and natural derivatives from a different class of MAO-A inhibitors were reported. CONCLUSION The review provides a valuable tool for the development of a new class of various selective MAO-A inhibitors for the treatment of depression and other anxiety disorders.
Collapse
Affiliation(s)
- Nisha A Rehuman
- Department of Pharmaceutical Chemistry, JJTU University, Jhunjhunu, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682, India
| | - Rakesh K Jat
- Department of Pharmaceutical Chemistry, JJTU University, Jhunjhunu, India
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
8
|
Mathew B. Privileged Pharmacophore of FDA Approved Drugs in Combination with Chalcone Framework: A New Hope for Alzheimer's Treatment. Comb Chem High Throughput Screen 2021; 23:842-846. [PMID: 32723232 DOI: 10.2174/1386207323999200728122627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
Multi-functional design of ligands emerged as a new drug design paradigm of Alzheimer's disease (AD). Given the complexity of AD, the molecules showing dual inhibition of monoamine oxidase (MAO) and acetylcholinesterase (AChE) with neuroprotective properties could prevent the progressive neural degeneration effectively. Numerous studies documented that chalcone is a privileged structural framework for the inhibition of both MAO and AChE. The recent studies suggested that the development of chalcone candidates endowed with pharmacophores of FDA approved drugs may become an active molecules in the field of current AD research. The current perspective described the recent updates of chalcone moiety linked with the pharmacophores of flurbiprofen and rivastigmine hybrids as selective ChE/MAO-B inhibitors for the prophylactic agents for AD.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, India
| |
Collapse
|
9
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
Affiliation(s)
- Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
10
|
Sharma P, Singh M, Mathew B. An Update of Synthetic Approaches and Structure‐Activity Relationships of Various Classes of Human MAO‐B Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Manjinder Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682 041 India
| |
Collapse
|
11
|
Mathew B, Carradori S, Guglielmi P, Uddin MS, Kim H. New Aspects of Monoamine Oxidase B Inhibitors: The Key Role of Halogens to Open the Golden Door. Curr Med Chem 2021; 28:266-283. [PMID: 31965939 DOI: 10.2174/0929867327666200121165931] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
A large plethora of drugs and promising lead compounds contain halogens in their structures. The introduction of such moieties strongly modulates their physical-chemical features as well as pharmacokinetic and pharmacodynamic profile. The most important outcome was shown to be the ability of these halogens to favourably influence the drug-target interaction and energetic stability within the active site by the establishment of halogen bonds. This review attempted to demonstrate the key role exerted by these versatile moieties when correctly located in an organic scaffold to display Monoamine Oxidase (MAO) inhibition and selectivity towards the B isoform of this important enzyme. Human MAOs are well-recognized as therapeutic targets for mood disorders and neurodegenerative diseases and medicinal chemists were prompted to discover the structural requirements crucial to discriminate the slight differences between the active sits of the two isoforms (MAO-A and MAOB). The analysis of the structure-activity relationships of the most important scaffolds (hydrazothiazoles, coumarins, chromones, chalcones, pyrazolines) and the impact of halogen (F, Cl, Br and I) insertion on this biological activity and isozyme selectivity have been reported being a source of inspiration for the medicinal chemists.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti 66100, Italy
| | - Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
12
|
Jeong GS, Kaipakasseri S, Lee SR, Marraiki N, Batiha GES, Dev S, Palakkathondi A, Kavully FS, Gambacorta N, Nicolotti O, Mathew B, Kim H. Selected 1,3-Benzodioxine-Containing Chalcones as Multipotent Oxidase and Acetylcholinesterase Inhibitors. ChemMedChem 2020; 15:2257-2263. [PMID: 32924264 DOI: 10.1002/cmdc.202000491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Chalcones are considered effective templates for the development of monoamine oxidase (MAO) and cholinesterase (ChE) inhibitors. The present work describes the syntheses of selected 1,3-benzodioxine-containing chalcones (CD3, CD8 and CD10), and their inhibitory activities against MAO-A, MAO-B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compound CD8 most potently inhibited MAO-B with an IC50 value of 0.026 μM, followed by CD10 and CD3 (1.54 and 1.68 μM, respectively). CD8 potently and non-selectively inhibited MAO-A (IC50 value of 0.023 μM). On the other hand, CD10 and CD8 inhibited AChE with IC50 values of 5.40 and 9.57 μM, respectively. Kinetics and reversibility experiments showed that all synthesized molecules were competitive and reversible inhibitors, and the Ki values of CD8 for MAO-A and MAO-B were 0.018 and 0.0019 μM, respectively. By in vitro and in silico analyses, all compounds were found to have high passive human gastrointestinal absorptions, blood-brain barrier permeabilities, and non-toxicities. Molecular docking simulations revealed that docking affinity of each compound for MAO-B was higher than that for MAO-A. The results indicate that CD8 is a potent non-selective MAO inhibitor, and CD10 is an effective selective MAO-B inhibitor, and both possess AChE inhibitory activity. Therefore, we suggest that CD8 and CD10 be considered potential dual-targeting inhibitors of MAO and AChE for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Geum Seok Jeong
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Sang Ryong Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al-Beheira, Egypt
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, Kerala, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| |
Collapse
|
13
|
Reeta, Baek SC, Lee JP, Rangarajan TM, Ayushee, Singh RP, Singh M, Mangiatordi GF, Nicolotti O, Kim H, Mathew B. Ethyl Acetohydroxamate Incorporated Chalcones: Unveiling a Novel Class of Chalcones for Multitarget Monoamine Oxidase-B Inhibitors Against Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:643-654. [PMID: 31550216 DOI: 10.2174/1871527318666190906101326] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chalcones are considered as the selective scaffold for the inhibition of MAO-B. OBJECTIVES A previously synthesized ethyl acetohydroxamate-chalcones (L1-L22) were studied for their inhibitory activities against human recombinant monoamine oxidase A and B (hMAO-A and hMAO-B, respectively) and acetylcholinesterase (AChE) as multi-target directed ligands for the treatment of Alzheimer's Disease (AD). METHODS Enzyme inhibition studies of MAO-A, MAO-B and AChE is carried out. Computational studies such as Molecular docking, Molecular Mechanics/Generalized Born Surface Area calculations, ADMET prediction, and protein target prediction are also performed. RESULTS Among the screened compounds, compound L3 has most potent hMAO-B inhibition with an IC50 value of 0.028 ± 0.0016 µM, and other compounds, L1, L2, L4, L8, L12, and L21 showed significant potent hMAO-B inhibition with IC50 values of 0.051 ± 0.0014, 0.086 ± 0.0035, 0.036 ± 0.0011, 0.096 ± 0.0061, 0.083 ± 0.0016, and 0.038 ± 0.0021 µM, respectively. On the other hand, among the tested compounds, compound L13 showed highest hMAO-A inhibition with an IC50 value of 0.51± 0.051 µM and L9 has a significant value of 1.85 ± 0.045 µM. However, the compounds L3 and L4 only showed high selectivities for hMAO-B with Selectivity Index (SI) values of 621.4 and 416.7, respectively. Among the substituents in ring A of ethyl acetohydroxamate-chalcones (L1-L9), F atom at p-position (L3) showed highest inhibitory effect against hMAO-B. This result supports the uniqness and bizarre behavior of fluorine. Moreover, chalcones L3, L4, L9, L11, and L12 showed potential AChE inhibitory effect with IC50 values of 0.67, 0.85, 0.39, 0.30, and 0.45 µM, respectively. Inhibitions of hMAO-B by L3 or L4 were recovered to the level of the reversible reference (lazabemide), and were competitive with Ki values of 0.0030 ± 0.0002 and 0.0046 ± 0.0005 µM, respectively. Inhibitions of AChE by L3 and L11 were of the competitive and mixed types with Ki values of 0.30 ± 0.044 and 0.14 ± 0.0054 µM, respectively. CONCLUSION The studies indicated that L3 and L4 are considered to be promising multitarget drug molecules with potent, selective, and reversible competitive inhibitors of hMAO-B and with highly potent AChE inhibitory effect.
Collapse
Affiliation(s)
- Reeta
- Centre for Fire, Explosive and Environment Saftey, DRDO, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Ayushee
- Department of Chemistry, University of Delhi, Delhi, India
| | - Rishi Pal Singh
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Manjula Singh
- Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia- Scienze del Farmaco, Universitá degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
14
|
Exploring the Therapeutic Potentials of Highly Selective Oxygenated Chalcone Based MAO-B Inhibitors in a Haloperidol-Induced Murine Model of Parkinson's Disease. Neurochem Res 2020; 45:2786-2799. [PMID: 32939670 DOI: 10.1007/s11064-020-03130-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of dopaminergic, noradrenergic, and serotonergic systems, in which dopamine, noradrenaline, and serotonin levels are depleted and lead to the development of motor and non-motor symptoms such as tremor, bradykinesia, weight changes, fatigue, depression, and visual hallucinations. Therapeutic strategies place much focus on dopamine replacement and the inhibition of dopamine metabolism. The present study was based on the known abilities of chalcones to act as molecular scaffolds that selectively inhibit MAO-B with the added advantage of binding reversibly. Recently, we synthesized a series of 26 chalcone compounds, amongst which (2E)-1-(2H-1,3-benzodioxol-5-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O10) and (2E)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O23) most inhibited MAO-B. Hence, the present study was performed to explore the molecular mechanisms responsible for the neuroprotective effect of O10 and O23 at varying doses such as 10, 20, and 30 mg/kg each in a haloperidol-induced murine model of PD. Both compounds were effective (though O23 was the more effective) at ameliorating extrapyramidal and non-motor symptoms in the model and improved locomotory and exploratory behaviors, reduced oxidative stress markers, and enhanced antioxidant marker and neurotransmitter levels. Furthermore, histopathological studies showed O10 and O23 both reduced neurofibrillary tangles and plaques to almost normal control levels.
Collapse
|
15
|
Synthesis, In Silico and In Vitro Evaluation for Acetylcholinesterase and BACE-1 Inhibitory Activity of Some N-Substituted-4-Phenothiazine-Chalcones. Molecules 2020; 25:molecules25173916. [PMID: 32867308 PMCID: PMC7504348 DOI: 10.3390/molecules25173916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer’s disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure–activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39–81%). The bioactivities of these substances were examined with pIC50 3.73–5.96 (AChE) and 5.20–6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.
Collapse
|
16
|
Olotu FA, Joy M, Abdelgawad MA, Narayanan SE, Soliman ME, Mathew B. Revealing the role of fluorine pharmacophore in chalcone scaffold for shifting the MAO-B selectivity: investigation of a detailed molecular dynamics and quantum chemical study. J Biomol Struct Dyn 2020; 39:6126-6139. [PMID: 32705963 DOI: 10.1080/07391102.2020.1796803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of highly selective monoamine oxidase-B (MAO-B) inhibitors has great therapeutic benefit in treatment of various neurodegenerative disorders. Recent study documented that shifting of fluorine atom from para to ortho position on the phenyl B ring of heteroaryl chalcones shown a remarkable shift in the selectivity and potency between MAO-A and MAO-B isoforms. Despite the large plethora of the design of new selective MAO-B inhibitors, the current paper illustrates the role and orientation of fluorine atom with remarkable MAO-B selectivity of three compounds (O23, O24 and O25), which differ from all other substituents encountered in the chalcone scaffolds is recently reported by our group. Conformational analyses of differential inhibitory effects of O23, O24 and O25 on MAO-A and MAO-B, differential analyses of complementary interactions at MAO-A/-B active sites and differential analysis of affinity binding and per-residue energy contributions are calculated by molecular dynamics study. Density functional theory based electronic structure calculations were employed with special emphasis to electrostatic potential and frontier molecular orbitals. Results of the current study can be used for lead modification and a new insight for the development of novel fluorinated chalcones for the treatment of various neurodegenerative disorders. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monu Joy
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Mohamed A Abdelgawad
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef university, Beni Suef, Egypt
| | - Siju E Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Government Medical College, Kannur, India
| | - Mahmoud E Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala, India
| |
Collapse
|
17
|
Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur J Med Chem 2020; 205:112650. [PMID: 32920430 DOI: 10.1016/j.ejmech.2020.112650] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
In the last years the continuous efforts in the development of novel and effective inhibitors of human monoamine oxidases (hMAOs) promoted the discovery of new agents able to effectively and selectively bound one of the two isoforms (hMAO-A and hMAO-B). However, the parent chalcone scaffold still covers an important role in hMAOs inhibition. In the present work, we focused our attention on the researches performed in the last five years, involving chalcones or compounds that can be correlated to them. We classified the chalcones into different groups depending on their structural characteristics or common molecular properties. In this regard, we also considered chalcones based on heterocycles and compounds endowed with scaffolds containing a masked chalcone motif. When structural attributes could not be used, we took advantage of enzymatic activity to arrange compounds in a group. We followed this approach for the multitarget agents. Finally, we also analysed the naturally occurring chalcones. All the sections were discussed exhaustively and the structure-activity relationship (SAR) analyses were sustained by means of detailed images describing the effects related to the substituents or structural changes.
Collapse
|
18
|
Maliyakkal N, Eom BH, Heo JH, Abdullah Almoyad MA, Thomas Parambi DG, Gambacorta N, Nicolotti O, Beeran AA, Kim H, Mathew B. A New Potent and Selective Monoamine Oxidase-B Inhibitor with Extended Conjugation in a Chalcone Framework: 1-[4-(Morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. ChemMedChem 2020; 15:1629-1633. [PMID: 32583952 DOI: 10.1002/cmdc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The general blueprint for the design of monoamine oxidase-B (MAO-B) inhibitors has been based on two phenyl or heteronuclei linked via a spacer of appropriate length. In this study, 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one (MO10) was prepared by the condensation of 4'-morpholinoacetophenone and cinnamaldehyde in basic alcoholic medium. MO10 was assessed for inhibitory activity against two human MAO isoforms, MAO-A and MAO-B. Interestingly, MO10 showed a remarkable inhibition against MAO-B with an IC50 value of 0.044 μM along with a selectivity index of 366.13. The IC50 value was better than that of lazabemide (IC50 value of 0.063 μM), which was used as a reference. Kinetics studies revealed that MO10 acted as a competitive inhibitor of MAO-B, with a Ki value of 0.0080 μM. The observation of recovery of MAO-B inhibition, compared to reference levels showed MO10 to be a reversible inhibitor. MTT assays showed that MO10 was nontoxic to normal VERO cells with an IC50 value of 195.44 μg/mL. SwissADME predicted that MO10 provided advantageous pharmacokinetics profiles for developing agents acting on the central nervous system, that is, high passive human gastrointestinal absorption and blood-brain barrier permeability. Molecular docking simulations showed that MO10 properly entered the aromatic cage formed by Y435, Y398, and FAD of the active site of MAO-B. On the basis of these results, MO10 can be considered a promising starting compound in development of agents for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Bo Hyun Eom
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Jeong Hyun Heo
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| |
Collapse
|
19
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
20
|
Parambi DGT, Oh JM, Baek SC, Lee JP, Tondo AR, Nicolotti O, Kim H, Mathew B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg Chem 2019; 93:103335. [PMID: 31606547 DOI: 10.1016/j.bioorg.2019.103335] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
The present study documents the synthesis of oxygenated chalcone (O1-O26) derivatives and their abilities to inhibit monoamine oxidases. All 26 derivatives examined showed potent inhibitory activity against MAO-B. Compound O23 showed the greatest inhibitory activity against MAO-B with an IC50 value of 0.0021 µM, followed by compounds O10 and O17 (IC50 = 0.0030 and 0.0034 µM, respectively). In addition, most of the derivatives potently inhibited MAO-A and O6 was the most potent inhibitor with an IC50 value of 0.029 µM, followed by O3, O4, O9, and O2 (IC50 = 0.035, 0.053, 0.072, and 0.082 µM, respectively). O23 had a high selectivity index (SI) value for MAO-B of 138.1, and O20 (IC50 value for MAO-B = 0.010 µM) had an extremely high SI of >4000. In dialysis experiments, inhibitions of MAO-A and MAO-B by O6 and O23, respectively, were recovered to their respective reversible reference levels, demonstrating both are reversible inhibitors. Kinetic studies revealed that O6 and O23 competitively inhibited MAO-A and MAO-B, respectively, with respective Ki values of 0.016 ± 0.0007 and 0.00050 ± 0.00003 µM. Lead compound are also non-toxic at 200 µg/mL in normal rat spleen cells. Molecular docking simulations and subsequent Molecular Mechanics/Generalized Born Surface Area calculations provided a rationale that explained experimental data.
Collapse
Affiliation(s)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Anna Rita Tondo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156 Milano, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India.
| |
Collapse
|
21
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Design, Synthesis and Docking Calculations of Prenylated Chalcones as Selective Monoamine Oxidase B Inhibitors with Antioxidant Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201901282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
24
|
Lakshminarayanan B, Baek SC, Lee JP, Kannappan N, Mangiatordi GF, Nicolotti O, Subburaju T, Kim H, Mathew B. Ethoxylated Head of Chalcones as a New Class of Multi‐Targeted MAO Inhibitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Balasubramanian Lakshminarayanan
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
- Department of PharmacyAnnamalai University Chidambaram- 608002, Tamilnadu India
| | - Seung Cheol Baek
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Jae Pil Lee
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Nagappan Kannappan
- Department of PharmacyAnnamalai University Chidambaram- 608002, Tamilnadu India
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del FarmacoUniversita degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4 I-70125 Bari Italy
| | - Thillainayagam Subburaju
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
| | - Hoon Kim
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
| |
Collapse
|
25
|
Chaves OA, Sasidharan R, dos Santos de Oliveira CHC, Manju SL, Joy M, Mathew B, Netto-Ferreira JC. In Vitro
Study of the Interaction Between HSA and 4-Bromoindolylchalcone, a Potent Human MAO-B Inhibitor: Spectroscopic and Molecular Modeling Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201802665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Otávio Augusto Chaves
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | - Rani Sasidharan
- College of Pharmaceutical Science; Government T.D. Medical College, Alappuzha; Kerala India
- Department of Chemistry, SAS; VIT University, Vellore; 632014 Tamil Nadu India
| | - Cosme H. C. dos Santos de Oliveira
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | | | - Monu Joy
- School of Pure & Applied Physics; M.G. University; 686560 Kottayam India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab; Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy, Palakkad; 678557 Kerala India
| | - José Carlos Netto-Ferreira
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Divisão de Metrologia Química; Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO); 25250-020 Duque de Caxias-RJ Brazil
| |
Collapse
|
26
|
Mathew B, Baek SC, Thomas Parambi DG, Lee JP, Mathew GE, Jayanthi S, Vinod D, Rapheal C, Devikrishna V, Kondarath SS, Uddin MS, Kim H. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352:e1800309. [PMID: 30663112 DOI: 10.1002/ardp.201800309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 11/07/2022]
Abstract
Two series of fluorinated chalcones containing morpholine and imidazole-based compounds (f1-f8) were synthesized and evaluated for recombinant human monoamine oxidase (MAO)-A and -B as well as acetylcholinesterase inhibitory activities. Our results indicate that morpholine containing chalcones are highly selective MAO-B inhibitors having reversibility properties. All the imidazole-based fluorinated chalcones showed weak MAO inhibitions in both isoforms. Among the tested compounds, (2E)-3-(3-fluorophenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (f2) showed potent inhibitory activity for recombinant human MAO-B (IC50 = 0.087 μM) with a high selectivity index (SI) of 517.2. In the recovery experiments using dialysis, the residual activity of MAO-B inhibited by f2 was close to that with the reversible reference inhibitor. Inhibition assays revealed that the Ki values of f1 and f2 for MAO-B were 0.027 and 0.020 μM, respectively, with competitive patterns. All the morpholine-based compounds (f1-f4) showed moderate inhibition toward acetylcholinesterase with IC50 values ranging between 24 and 54 μM. All morpholine-containing compounds exhibit good blood-brain barrier permeation in the PAMPA method. The rational approach regarding the highly selective MAO-B inhibitor f2 was further ascertained by induced fit docking and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Seung C Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Jae P Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Devaraji Vinod
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Clariya Rapheal
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Vinod Devikrishna
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Shahin Shad Kondarath
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
27
|
Mathew B. Unraveling the Structural Requirements of Chalcone Chemistry Towards Monoamine Oxidase Inhibition. Cent Nerv Syst Agents Med Chem 2019; 19:6-7. [PMID: 30706795 DOI: 10.2174/1871524919666190131160122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
28
|
Parambi DGT, Aljoufi F, Murugaiyah V, Mathew GE, Dev S, Lakshminarayanan B, Hendawy OM, Mathew B. Cholinesterase Inhibitory Activities of Selected Halogenated Thiophene Chalcones. Cent Nerv Syst Agents Med Chem 2018; 19:67-71. [PMID: 30451121 DOI: 10.2174/1871524918666181119114016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dual-acting human monoamine oxidase B (hMAO-B) and cholinesterase (ChE) inhibitors are more effective than the classic one-drug one-target therapy for Alzheimer's disease (AD). METHODS The ChE inhibitory ability of some halogenated thiophene chalcone-based molecules known to be selective hMAO-B inhibitors was evaluated. RESULTS Based on the IC50 values, the selected compounds were found to moderately inhibit ChE, with IC50 values in the range of 14-70 µM. Among the synthesised molecules, T8 and T6 showed the most potent inhibitory activity against AChE and BChE, respectively. CONCLUSION Taken together, the data revealed that T8 could be further optimized to enhance its AChE inhibitory activity.
Collapse
Affiliation(s)
- Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Fakhrya Aljoufi
- Department of Pharmacology, College of Pharmacy, Al- Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Vikneswaran Murugaiyah
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad 678004, Kerala, India
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al Shifa College of Pharmacy, Perinthalmanna 679325, Kerala, India
| | - Balasubramanain Lakshminarayanan
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| | - Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Al- Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia.,Department of Clinical Pharmacology, Faculty of Medicine, Beni Suef University, Bani Sweif, Egypt
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
29
|
Mathew B, Baek SC, Grace Thomas Parambi D, Pil Lee J, Joy M, Annie Rilda PR, Randev RV, Nithyamol P, Vijayan V, Inasu ST, Mathew GE, Lohidakshan KK, Kumar Krishnan G, Kim H. Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. MEDCHEMCOMM 2018; 9:1871-1881. [PMID: 30568755 PMCID: PMC6254048 DOI: 10.1039/c8md00399h] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
A series of 13 phenyl substituted thiosemicarbazones (SB1-SB13) were synthesized and evaluated for their inhibitory potential towards human recombinant monoamine oxidase A and B (MAO-A and MAO-B, respectively) and acetylcholinesterase. The solid state structure of SB4 was ascertained by the single X-ray diffraction technique. Compounds SB5 and SB11 were potent for MAO-A (IC50 1.82 ± 0.14) and MAO-B (IC50 0.27 ± 0.015 μM), respectively. Furthermore, SB11 showed a high selectivity index (SI > 37.0) for MAO-B. The effects of fluorine orientation revealed that SB11 (m-fluorine) showed 28.2 times higher inhibitory activity than SB12 (o-fluorine) against MAO-B. Furthermore, inhibitions by SB5 and SB11 against MAO-A and MAO-B, respectively, were recovered to near reference levels in reversibility experiments. Both SB5 and SB11 showed competitive inhibition modes, with K i values of 0.97 ± 0.042 and 0.12 ± 0.006 μM, respectively. These results indicate that SB5 and SB11 are selective, reversible and competitive inhibitors of MAO-A and MAO-B, respectively. Compounds SB5, SB7 and SB11 showed moderate inhibition against acetylcholinesterase with IC50 values of 35.35 ± 0.47, 15.61 ± 0.057 and 26.61 ± 0.338 μM, respectively. Blood-brain barrier (BBB) permeation was studied using the parallel artificial membrane permeation assay (PAMPA) method. Molecular docking studies were carried out using AutoDock 4.2.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Seung Cheol Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| | | | - Jae Pil Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| | - Monu Joy
- School of Pure & Applied Physics , M.G. University , Kottayam , Kerala , India
| | - P R Annie Rilda
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Rugma V Randev
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - P Nithyamol
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Vijitha Vijayan
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Sini T Inasu
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | | | | | - Girish Kumar Krishnan
- Department of Pharmaceutical Chemistry , College of Pharmaceutical Sciences , Government Medical College Trivandrum , India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| |
Collapse
|
30
|
Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorg Chem 2018; 80:86-93. [DOI: 10.1016/j.bioorg.2018.06.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 12/19/2022]
|
31
|
Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors. Biomed Pharmacother 2018; 106:8-13. [PMID: 29940538 DOI: 10.1016/j.biopha.2018.06.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
In the present study, series of eleven (2E)-1-[4-(1H-imidazol-1-yl)substituted phenyl]-3-phenylprop-2-en-1-one (IM1-IM11) derivatives were synthesized and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The results indicate that (2E)-3-[4-(dimethylamino) phenyl]-1-[4-(1H-imidazol-1-yl) phenyl] prop-2-en-1-one (IM5) is a nonselective and reversible competitive inhibitor of MAO-A and MAO-B with IC50 values of 0.30 ± 0.010 and 0.40 ± 0.017 μM, respectively ; those of (2E)-1-[4-(1H-imidazol-1-yl) phenyl]-3-(4-methylphenyl) prop-2-en-1-one (IM4) were 1.06 ± 0.090 and 0.32 ± 0.021 μM, respectively. Kinetic studies document that both IM5 and IM4 are competitive inhibitors of MAO-A and MAO-B with Ki value of 0.11 ± 0.0085 and 0.085 ± 0.0064 μM, respectively. Molecular docking studies of lead compounds further explained the binding modes in the inhibitor binding cavity of both MAO-A and MAO-B.
Collapse
|
32
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
33
|
Mathew B, Dev S, Joy M, Mathew GE, Marathakam A, Krishnan GK. Refining the Structural Features of Chromones as Selective MAO-B Inhibitors: Exploration of Combined Pharmacophore-Based 3D-QSAR and Quantum Chemical Studies. ChemistrySelect 2017. [DOI: 10.1002/slct.201701213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy; Palakkad 678557, Kerala India
| | - Sanal Dev
- Department of Pharmaceutical Chemistry; Al Shifa College of Pharmacy; Perinthalmanna 679325, Kerala India
| | - Monu Joy
- School of Pure & Applied Physics; M.G. University; Kottayam- 686560 India
| | - Githa E. Mathew
- Department of Pharmacology; Grace College of Pharmacy; Palakkad 678004, Kerala India
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry; National College of Pharmacy; Calicut 673602, Kerala India
| | - Girish K. Krishnan
- College of Pharmaceutical Science; Government Medical College; Trivandrum, Kerala India
| |
Collapse
|
34
|
Mathew B, Uçar G, Rapheal C, Mathew GE, Joy M, Machaba KE, Soliman MES. Characterization of Thienylchalcones as hMAO-B Inhibitors: Synthesis, Biochemistry and Molecular Dynamics Studies. ChemistrySelect 2017. [DOI: 10.1002/slct.201702141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy; Palakkad- 678557, Kerala India
| | - Gülberk Uçar
- Department of Biochemistry, Faculty of Pharmacy; Hacettepe University; 06100 Sıhhiye Ankara Turkey
| | - Clariya Rapheal
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy; Palakkad- 678557, Kerala India
| | - Githa E. Mathew
- Department of Pharmacology; Grace College of Pharmacy; Palakkad 678004, Kerala India
| | - Monu Joy
- School of Pure & Applied Physics; Mahatma Gandhi University; Kottayam, Kerala- 686560 India
| | - Kgothatso E. Machaba
- Molecular Modelling and Drug Design Research Group, School of Health Sciences; University of KwaZulu-Natal; Westville, Durban 4001 South Africa
| | - Mahmoud E. S. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences; University of KwaZulu-Natal; Westville, Durban 4001 South Africa
| |
Collapse
|
35
|
Suresh J, Baek SC, Ramakrishnan SP, Kim H, Mathew B. Discovery of potent and reversible MAO-B inhibitors as furanochalcones. Int J Biol Macromol 2017; 108:660-664. [PMID: 29195801 DOI: 10.1016/j.ijbiomac.2017.11.159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
A series of twelve furanochalcones (F1-F12) was synthesized and investigated for their human monoamine oxidase inhibitory activities. Among the series, compound (2E, 4E)-1-(furan-2-yl)-5-phenylpenta-2, 4-dien-1-one (F1), which was analyzed by single-crystal X-ray diffraction, showed potent and selective MAO-B inhibitory activity with an inhibition constant (Ki) value of 0.0041 μM and selectivity index of (SI) 172.4, and exhibited competitive inhibition. Introduction of a cinnamyl group to the furanochalcone significantly increased the inhibitory activity. In the dilution-recovery experiments, the residual activities of MAO-A and MAO-B by F1 under the diluted condition fully recovered as compared with the undiluted condition, indicating F1 is a reversible inhibitor. The Ki value of F1 is the lowest among the values of chalcone derivatives and furthermore lower than that (0.0079 μM) of the reversible MAO-B inhibitor, lazabemide, a marketed drug. Molecular docking study against hMAO-B provided the binding site interactions of the lead compound, including strong π-π stacking between the phenyl system and FAD nucleus.
Collapse
Affiliation(s)
- Jerad Suresh
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai, 600003, India
| | - Seung Cheol Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | | | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India.
| |
Collapse
|
36
|
Mathew B, Mathew GE, Ucar G, Joy M, Nafna E, Lohidakshan KK, Suresh J. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int J Biol Macromol 2017; 104:1321-1329. [DOI: 10.1016/j.ijbiomac.2017.05.162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/27/2017] [Accepted: 05/28/2017] [Indexed: 01/24/2023]
|
37
|
Mathew B, Adeniyi AA, Dev S, Joy M, Ucar G, Mathew GE, Singh-Pillay A, Soliman MES. Pharmacophore-Based 3D-QSAR Analysis of Thienyl Chalcones as a New Class of Human MAO-B Inhibitors: Investigation of Combined Quantum Chemical and Molecular Dynamics Approach. J Phys Chem B 2017; 121:1186-1203. [DOI: 10.1021/acs.jpcb.6b09451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bijo Mathew
- Division
of Drug Design and Medicinal Chemistry Research Lab, Department of
Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| | - Adebayo A. Adeniyi
- School
of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Sanal Dev
- Department
of Pharmaceutical Chemistry, Al Shifa College of Pharmacy, Perinthalmanna 679325, Kerala, India
| | - Monu Joy
- School of Pure & Applied Physics, M.G. University, Kottayam 686560, India
| | - Gülberk Ucar
- Department
of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | | | - Ashona Singh-Pillay
- School
of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- School
of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| |
Collapse
|
38
|
Mathew B, Uçar G, Mathew GE, Mathew S, Kalatharakkal Purapurath P, Moolayil F, Mohan S, Varghese Gupta S. Monoamine Oxidase Inhibitory Activity: Methyl- versus Chlorochalcone Derivatives. ChemMedChem 2016; 11:2649-2655. [PMID: 27902880 DOI: 10.1002/cmdc.201600497] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Numerous studies have shown that chalcones are promising scaffolds for the development of new monoamine oxidase-B (MAO-B) inhibitors. As a continuation of our ongoing research into the development of reversible human MAO-B (hMAO-B) inhibitors, two series of twenty chalcones containing electron-donating and electron-withdrawing substituents were synthesized. All compounds were found to be competitive, selective, and reversible inhibitors of hMAO-B except (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (P7) and (2E)-1-(4-chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (P17), which were found to be selective inhibitors of hMAO-A. The most potent hMAO-B inhibitor, (2E)-1-(4-chlorophenyl)-3-(4-ethylphenyl)prop-2-en-1-one (P16), showed a Ki value of 0.11±0.01 μm. Molecular docking simulations were carried out to identify the hypothetical binding mode for the most potent compounds in the active sites of hMAO-A and B. The ability of the compounds to cross the blood-brain barrier was assessed by parallel artificial membrane permeability assay (PAMPA). Additionally, the most potent hMAO-B inhibitor P16 showed no toxicity in cultured hepatic cells at concentrations of 5 and 25 μm.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| | - Gülberk Uçar
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Turkey
| | | | - Sincy Mathew
- Department of Pharmaceutical Chemistry, Grace College of Pharmacy, Palakkad, 678004, Kerala, India
| | | | - Fasil Moolayil
- Department of Pharmaceutical Chemistry, Grace College of Pharmacy, Palakkad, 678004, Kerala, India
| | - Smrithy Mohan
- Department of Pharmaceutical Chemistry, Grace College of Pharmacy, Palakkad, 678004, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|