1
|
Abdelrazek FM, Zaki ME, Al-Hussain SA, Farag B, Hebishy AM, Abdelfattah MS, Hassan SM, El-Farargy AF, Iovkova L, Mross D, Gomha SM. Facile one-pot synthesis and in silico study of new heterocyclic scaffolds with 4-pyridyl moiety: Mechanistic insights and X-ray crystallographic elucidation. Heliyon 2024; 10:e29221. [PMID: 38617929 PMCID: PMC11015136 DOI: 10.1016/j.heliyon.2024.e29221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
4-Acetylpyridine 1 and malononitrile 2 were allowed to react in a 3MCRs with dimedone 3a or cyclohexa-1,3-dione 3b under reflux to afford 4-methyl-4-(pyridin-4-yl)-5,6,7,8-tetrahydro-4H-chromene derivatives 4a,b respectively. The mechanism of the reaction has been studied and the structures elucidated by analytical, spectral as well as X-ray crystallographic data. Heterocyclic compounds find widespread application in pharmaceutical and agrochemical products. Docking analyses were performed on the synthesized compounds to assess their binding modes with various amino acids of the target protein tubulin (PDB Code - 1SA0). The results indicated promising binding scores for compounds 4a and 4b, suggesting a strong affinity for the tubulin binding site. Finally, ADMET for the synthesized compounds 4a, 4b, 5, 8a and 8b were carried out. The drug likeness and pharmacokinetic properties of the prepared compounds were also evaluated. Notably, all of the novel compounds adhered to Lipinski's rule (Ro5) without any violations.
Collapse
Affiliation(s)
- Fathy M. Abdelrazek
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Magdi E.A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basant Farag
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ali M. Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Helwan, 11795, Cairo, Egypt
| | - Mohamed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, Helwan, 11795, Cairo, Egypt
| | - Safaa M. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Helwan University, Helwan, 11795, Cairo, Egypt
| | - Ahmed F. El-Farargy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Dortmund, 44227, Germany
| | - Lyuba Iovkova
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Dortmund, 44227, Germany
| | - David Mross
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Dortmund, 44227, Germany
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| |
Collapse
|
2
|
Strzelecka M, Wiatrak B, Jawień P, Czyżnikowska Ż, Świątek P. New Schiff bases derived from dimethylpyridine-1,2,4-triazole hybrid as cytotoxic agents targeting gastrointestinal cancers: Design, synthesis, biological evaluation and molecular docking studies. Bioorg Chem 2023; 139:106758. [PMID: 37540951 DOI: 10.1016/j.bioorg.2023.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this research, a series of novel hybrid structures of dimethylpyridine-1,2,4-triazole Schiff bases were designed, synthesized, and evaluated for their in vitro cytotoxic potency on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, HT29) and normal colonic epithelial cells (CCD 841 CoN). Schiff base 4h was the most potent compound against gastric EPG cancer cells (CC50 = 12.10 ± 3.10 μM), being 9- and 21-fold more cytotoxic than 5-FU and cisplatin, respectively. Moreover, it was not toxic to normal cells. Regarding the cytotoxicity against colorectal cancer cells, compounds 4d and 4l exhibited good activity against HT29 cells (CC50 = 52.80 ± 2.80 μM and 61.40 ± 10.70 μM, respectively), and were comparable to or more potent than cisplatin and 5-FU. Also, they were less toxic to normal cells with a higher selectivity index (SI, CCD 841 CoN/HT29 = 4.20 and 2.85, respectively) than reference drugs (SI, CCD 841 CoN/HT29 < 1). Selected Schiff bases were subjected to the P-glycoprotein inhibition assay. Schiff bases 4d, 4e, and 4l influenced P-gp efflux function, significantly increasing the accumulation of rhodamine 123 in colon cancer cell lines. Further mechanistic studies showed that compound 4l induced apoptotic cell death through a caspase-dependent mechanism and by regulating the p53-MDM2 signaling pathway in HT29 cells. Also, physicochemical predictions of compounds 4d, 4e, 4h, and 4i were examined in silico. The results revealed that the compounds possessed promising drug-likeness profiles.
Collapse
Affiliation(s)
- Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|
3
|
Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules 2023; 28:molecules28062718. [PMID: 36985690 PMCID: PMC10057893 DOI: 10.3390/molecules28062718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The treatment of infectious diseases is a challenging issue faced by the medical community. The emergence of drug-resistant strains of bacteria and fungi is a major concern. Researchers and medical professionals are working to develop new and innovative treatments for infectious diseases. Schiff bases are one a promising class of compounds. In this work, new derivatives were obtained of the 4-amino-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione reaction, with corresponding benzaldehydes with various substituents at position 4. The antibacterial and antifungal activities of all synthesized compounds were tested. Several new substances have shown moderate antifungal activity against Candida spp. The highest activity directed against C. albicans was shown by compound RO4, with a 4-methoxyphenyl moiety and an MIC value of 62.5 µg/mL. In order to check the toxicity of the synthesized compounds, their effect on cell lines was examined. Additionally, we tried to elucidate the mechanism of the antibacterial and antifungal activity of the tested compounds using molecular docking to topoisomerase IV, D-Alanyl-D-Alanine Ligase, and dihydrofolate reductase.
Collapse
|
4
|
Computational Approaches to the Rational Design of Tubulin-Targeting Agents. Biomolecules 2023; 13:biom13020285. [PMID: 36830654 PMCID: PMC9952983 DOI: 10.3390/biom13020285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.
Collapse
|
5
|
Tilekar K, Shelke O, Upadhyay N, Lavecchia A, Ramaa CS. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Xia LY, Zhang YL, Yang R, Wang ZC, Lu YD, Wang BZ, Zhu HL. Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Curr Med Chem 2021; 27:6787-6814. [PMID: 31580244 DOI: 10.2174/0929867326666191003154051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.
Collapse
Affiliation(s)
- Lin-Ying Xia
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Liang Zhang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Rong Yang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Chang Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Ya-Dong Lu
- Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing 210008, P.R. China
| | - Bao-Zhong Wang
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China
| | - Hai-Liang Zhu
- Zhengzhou Children’s Hospital, Zhengzhou 450018, P.R. China
| |
Collapse
|
7
|
Ahmadi S, Toropova AP, Toropov AA. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles. Nanotoxicology 2020; 14:1118-1126. [DOI: 10.1080/17435390.2020.1808252] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shahin Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
8
|
Tilekar K, Upadhyay N, Meyer-Almes FJ, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Pokrovsky VS, Lavecchia A, S Ramaa C. Synthesis and Biological Evaluation of Pyrazoline and Pyrrolidine-2,5-dione Hybrids as Potential Antitumor Agents. ChemMedChem 2020; 15:1813-1825. [PMID: 32715626 DOI: 10.1002/cmdc.202000458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 02/06/2023]
Abstract
In search of novel and effective antitumor agents, pyrazoline-substituted pyrrolidine-2,5-dione hybrids were designed, synthesized and evaluated in silico, in vitro and in vivo for anticancer efficacy. All the compounds exhibited remarkable cytotoxic effects in MCF7 and HT29 cells. The excellent antiproliferative activity toward MCF7 (IC50 =0.78±0.01 μM), HT29 (IC50 =0.92±0.15 μM) and K562 (IC50 =47.25±1.24 μM) cell lines, prompted us to further investigate the antitumor effects of the best compound S2 (1-(2-(3-(4-fluorophenyl)-5-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione). In cell-cycle analysis, S2 was found to disrupt the growth phases with increased cell population in G1 /G0 phase and decreased cell population in G2 /M phase. The excellent in vitro effects were also supported by inhibition of anti-apoptotic protein Bcl-2. In vivo tumor regression studies of S2 in HT29 xenograft nude mice, exhibited equivalent and promising tumor regression with maximum TGI, 66 % (i. p. route) and 60 % (oral route) at 50 mg kg-1 dose by both the routes, indicating oral bioavailability and antitumor efficacy. These findings advocate that hybridization of pyrazoline and pyrrolidine-2,5-dioes holds promise for the development of more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295, Darmstadt, Germany
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126, Bari, Italy
| | - Natalia Y Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute Department of Chemistry, East Carolina University, 27834, Greenville, North Carolina, USA
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, 115478, Moscow, Russia.,Department of Biochemistry, People's Friendship University, 117198, Moscow, Russia
| | - Antonio Lavecchia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur, 400614, Navi Mumbai, India
| |
Collapse
|
9
|
Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Najafi A. Biosynthesis of Gold Nanoparticles Assisted by Lipopeptide Biosurfactant Derived from Acinetobacter junii B6 and Evaluation of Its Antibacterial and Cytotoxic Activities. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00782-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Adeli-Sardou M. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog 2019; 138:103806. [PMID: 31629797 DOI: 10.1016/j.micpath.2019.103806] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Lipopeptide biosurfactants (LPBs) are amphiphilic compounds produced by microorganisms exhibiting various biological activities. The main aim of the present study was to assess the in vitro antimicrobial, anti-biofilm, and cytotoxic effects of LPB produced by Acinetobacter junii (AjL). We determined AjL minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria as well as two fungal strains. Also, the anti-biofilm activity of AjL against the biofilm produced by clinically isolated bacterial strains was investigated. The AjL non-selectively showed activity against both Gram-positive and Gram-negative bacterial strains. The obtained results of the present study exhibited that the AjL in concentrations nearly below critical micelle concentration (CMC) has an effective antibacterial activity. It was found that the MIC values of AjL were lower than standard antifungal and it exhibited nearly 100% inhibition against Candida utilis. The attained results of the biofilm formation revealed that AjL disrupted the biofilm of Proteus mirabilis, Staphylococcus aureus, and Pseudomonas aeruginosa at 1250 μg/ml and 2500 μg/ml concentrations. The attained results of cytotoxic effect (determined by WST-1 assay) of the AjL revealed IC50 of 7.8 ± 0.4 mg/ml, 2.4 ± 0.5 mg/ml, and 5.7 ± 0.1 mg/ml, against U87, KB, and HUVEC cell lines, respectively. The results indicated that AjL has a potential application in the relatively new field of biomedicine.
Collapse
Affiliation(s)
- Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, Moshafi MH, Ameri A, Rahimi HR, Forootanfar H. Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|