Chen D, Cheng Y, Shi L, Gao X, Huang Y, Du Z. Design, Synthesis, and Antimicrobial Activity of Amide Derivatives Containing Cyclopropane.
Molecules 2024;
29:4124. [PMID:
39274972 PMCID:
PMC11397633 DOI:
10.3390/molecules29174124]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
As an important small organic molecule, cyclopropane is widely used in drug design. In this paper, fifty-three amide derivatives containing cyclopropane were designed and synthesized by introducing amide groups and aryl groups into cyclopropane through the active splicing method, and their antibacterial and antifungal activities were evaluated in vitro. Among them, thirty-five compounds were new compounds, and eighteen compounds were known compounds (F14, F15, F18, F20-F26, F36, and F38-F44). Bioassay results disclosed that four, three, and nine of the compounds showed moderate activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, respectively. Three compounds were sensitive to Candida albicans, with excellent antifungal activity (MIC80 = 16 μg/mL). The molecular docking results show that compounds F8, F24, and F42 have good affinity with the potential antifungal drug target CYP51 protein.
Collapse