1
|
Generalić Mekinić I, Politeo O, Ljubenkov I, Mastelić L, Popović M, Veršić Bratinčević M, Šimat V, Radman S, Skroza D, Ninčević Runjić T, Runjić M, Dumičić G, Urlić B. The alphabet of sea fennel: Comprehensive phytochemical characterisation of Croatian populations of Crithmum maritimum L. Food Chem X 2024; 22:101386. [PMID: 38681233 PMCID: PMC11052897 DOI: 10.1016/j.fochx.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Extreme environmental conditions affect the synthesis and accumulation of bioactive metabolites in halophytic plants. The aim of this study was to investigate the presence and quantity of key health-promoting phytochemicals in Croatian sea fennel, one of the most popular Mediterranean halophytes with a wide range of uses. The EOs were characterised by a high content of limonene (up to 93%), while the fatty acid profile shows a low content of oleic acid and the presence of valuable linoleic acid (ω-6) and linolenic acid (ω-3) in high percentages. The dominances of lutein and α-tocopherol were also confirmed in all samples. The results confirm the great variability in the chemistry of sea fennel populations in the Mediterranean region, with significant differences in the composition of the Croatian samples compared to the others, as well as the presence and high concentrations of the analysed bioactive compounds that contribute to the plant's health-promoting attributes.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Ivica Ljubenkov
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21000 Split, Croatia
| | - Linda Mastelić
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21000 Split, Croatia
| | - Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Vida Šimat
- Department of Marine Studies, University of Split, Ruđera Boškovića 37, HR-21000 Split, Croatia
| | - Sanja Radman
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Marko Runjić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Gvozden Dumičić
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| | - Branimir Urlić
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia
| |
Collapse
|
2
|
Kavallieratos NG, Eleftheriadou N, Boukouvala MC, Skourti A, Filintas CS, Gidari DLS, Maggi F, Rossi P, Drenaggi E, Morshedloo MR, Ferrati M, Spinozzi E. Exploring the Efficacy of Four Apiaceae Essential Oils against Nine Stored-Product Pests in Wheat Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:533. [PMID: 38498519 PMCID: PMC10893152 DOI: 10.3390/plants13040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The Apiaceae family, known for aromatic plants producing bioactive essential oils (EOs), holds significance across sectors, including agrochemicals. This study evaluated the insecticidal potential of four Apiaceae EOs from Crithmum maritimum L., Trachyspermum ammi (L.) Sprague ex Turrill, Smyrnium olusatrum L., and Elwendia persica (Boiss.) Pimenov and Kljuykov against various significant storage pests (Sitophilus oryzae (L.), Trogoderma granarium Everts, Rhyzopertha dominica (F.), Tribolium castaneum (Herbst), T. confusum Jacquelin du Val, Oryzaephilus surinamensis (L.), Alphitobius diaperinus (Panzer), Acarus siro L., and Tenebrio molitor L.) on wheat. Insect mortality rates were monitored at intervals of 1, 2, 3, 4, 5, 6, and 7 days. Smyrnium olusatrum EO exhibited the highest efficacy, followed by T. ammi, C. maritimum, and E. persica EOs, although efficacy varied by species, developmental stage, and concentration. Notably, complete mortality occurred for several pests at 1000 ppm of S. olusatrum and T. ammi EOs. Gas chromatography-mass spectrometry (GC-MS) analysis revealed key compounds in these EOs, including myrcene, germacrone, and curzerene in S. olusatrum EO, and thymol, γ-terpinene, and p-cymene in T. ammi EO. These findings emphasize their potential as botanical insecticides. Smyrnium olusatrum and T. ammi EOs emerge as promising eco-friendly pest management options due to their efficacy, highlighted compound composition, and availability of biomass from both wild and cultivated sources.
Collapse
Affiliation(s)
- Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (N.E.); (M.C.B.); (A.S.); (C.S.F.); (D.L.S.G.)
| | - Nikoleta Eleftheriadou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (N.E.); (M.C.B.); (A.S.); (C.S.F.); (D.L.S.G.)
| | - Maria C. Boukouvala
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (N.E.); (M.C.B.); (A.S.); (C.S.F.); (D.L.S.G.)
| | - Anna Skourti
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (N.E.); (M.C.B.); (A.S.); (C.S.F.); (D.L.S.G.)
| | - Constantin S. Filintas
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (N.E.); (M.C.B.); (A.S.); (C.S.F.); (D.L.S.G.)
| | - Demeter Lorentha S. Gidari
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece; (N.E.); (M.C.B.); (A.S.); (C.S.F.); (D.L.S.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Maddona Delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.)
| | - Paolo Rossi
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy;
| | - Ettore Drenaggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Maddona Delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.)
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 5518183111, Iran;
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Maddona Delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Maddona Delle Carceri, 62032 Camerino, Italy; (F.M.); (M.F.); (E.S.)
| |
Collapse
|
3
|
Correia I, Antunes M, Tecelão C, Neves M, Pires CL, Cruz PF, Rodrigues M, Peralta CC, Pereira CD, Reboredo F, Moreno MJ, Brito RMM, Ribeiro VS, Vaz DC, Campos MJ. Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel). PLANTS (BASEL, SWITZERLAND) 2024; 13:427. [PMID: 38337960 PMCID: PMC10857157 DOI: 10.3390/plants13030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Crithmum maritimum L. (sea fennel), an edible xerophyte of coastal habitats, is considered an emerging cash crop for biosaline agriculture due to its salt-tolerance ability and potential applications in the agri-food sector. Here, the nutritional value and bioactive properties of sea fennel are described. Sea fennel leaves, flowers, and schizocarps are composed of carbohydrates (>65%) followed by ash, proteins, and lipids. Sea fennel's salty, succulent leaves are a source of omega-6 and omega-3 polyunsaturated fatty acids, especially linoleic acid. Extracts obtained from flowers and fruits/schizocarps are rich in antioxidants and polyphenols and show antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermis, Candida albicans, and Candida parapsilosis. Plant material is particularly rich in sodium (Na) but also in other nutritionally relevant minerals, such as calcium (Ca), chlorine (Cl), potassium (K), phosphorus (P), and sulfur (S), beyond presenting a potential prebiotic effect on Lactobacillus bulgaricus and being nontoxic to human intestinal epithelial Caco-2 model cells, up to 1.0% (w/v). Hence, the rational use of sea fennel can bring nutrients, aroma, and flavor to culinary dishes while balancing microbiomes and contributing to expanding the shelf life of food products.
Collapse
Affiliation(s)
- Iris Correia
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
| | - Madalena Antunes
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
| | - Carla Tecelão
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Marta Neves
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Cristiana L. Pires
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Pedro F. Cruz
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Maria Rodrigues
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Claúdia C. Peralta
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Cidália D. Pereira
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- Centre for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Fernando Reboredo
- GeoBioTec, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Rui M. M. Brito
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
| | - Vânia S. Ribeiro
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- Centre for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Daniela C. Vaz
- Coimbra Chemistry Centre (CQC), Institute of Molecular Sciences, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal (P.F.C.); (M.J.M.)
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), ESTG-IPLeiria, 2411-901 Leiria, Portugal; (M.R.); (V.S.R.)
- ALiCE–Associate Laboratory in Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
| | - Maria Jorge Campos
- Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal (M.N.)
- School of Tourism and Marine Technology, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
4
|
Jallali I, Hannachi H, Zaouali Y, Smaoui A, Abdelly C, Ksouri R. Crithmum maritimum L. Volatile Compound's Diversity Through Tunisian Populations: Use of a Plant Organ-Based Statistical Approach for Chemotype Identification. Chem Biodivers 2023; 20:e202300827. [PMID: 37884443 DOI: 10.1002/cbdv.202300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
This work aimed to investigate the variability of the chemical composition of the aromatic halophyte Crithmum maritimum L. essential oils according to the geographical origin and separated organs, using a statistical approach based on the multiple analysis of variance and the Principal Component Analyses. One hundred twenty samples were collected from three distinct bioclimatic regions (10 samples×3 provenances×4 organs). Hydrodistillation of separated organs (roots, stems, leaves and flowers) yielded 0.13 to 1.75 % of the dry matter. Chemical investigation of the volatile compounds by Gas chromatography-mass spectrometry showed that C. maritimum essential oils were dominated by monoterpenes hydrocarbons, oxygenated monoterpenes, and phenylpropanoids varying, respectively, from 33.3 to 66.9, from 7.8 to 46.6 and from 4.5 to 57.2 % according to organs and localities. Statistical analyses identified three different chemotypes depending on the geographic origin as follow: γ-Terpinene-Thymol methyl ether / Dillapiole / Thymol methyl ether-Dillapiole.
Collapse
Affiliation(s)
- Inès Jallali
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| | - Hédia Hannachi
- Laboratory of plant productivity and environmental constraint, LR18ES04, Biology Department, Faculty of Sciences, University Tunis El Manar, 2092, Tunisia
| | - Yosr Zaouali
- Laboratoire de Biotechnologies Végétales, Institut National des Sciences Appliquées et des Technologies de Tunis (INSAT), BP 676, 1080, Tunis Cedex, Tunisie
| | - Abderrazek Smaoui
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| |
Collapse
|
5
|
Zhang L, Zhang Y, He Y, Dai H, Shu Z, Zhang W, Bi J. The component of the Chamaecyparis obtusa essential oil and insecticidal activity against Tribolium castaneum (Herbst). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105546. [PMID: 37666617 DOI: 10.1016/j.pestbp.2023.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Tribolium castaneum (Herbst) is a worldwide grain storage pest controlled by chemical control methods of phosphine fumigation, which results in many hazards, damages human health, makes pests resistant to pesticides, and pollutes the environment. In recent years, the popularity of botanical insecticides has continued to rise, and plant essential oils (EO) are considered potential alternatives for developing insecticides. In the current study, we selected the Chamaecyparis obtusa EO to determine its insecticidal effects and component analysis on T. castaneum. Through gas chromatography-ion mobility spectrometry (GC-IMS) technology, cedrol was the most obvious compound in the signal peak of the volatile components detected in the C. obtusa EO. The results of the bioassay showed that the C. obtusa EO had certain contact activity against T. castaneum, and the LD50 was 52.54 μg/adult. At three concentrations (0.41,1.62, 2.83 uL/cm2), the repellent rates of C. obtusa EO against T. castaneum were all above 80% at 15, 30, 60, and 120 min, respectively, indicating that the repellent effect was strong. Meanwhile, the C. obtusa EO exhibited fumigant toxicity against T. castaneum with LC50 values of 7.09 μg/L air. In addition, C. obtusa EO significantly increased the activity of AChE, CarE, POD, CAT, T-SOD, and chitinase in T. castaneum. Finally, the mechanism of C. obtusa EO on T. castaneum adults was explored based on transcriptome sequencing. We found that the DEGs focused on the chitin metabolic process and some aging genes in T. castaneum. Therefore, C. obtusa EO could be used as potential eco-friendly candidates for stored grain pest management.
Collapse
Affiliation(s)
- Lirui Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanping He
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huang Dai
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zaixi Shu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Bi
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
7
|
Khemis E, Mustapha MB, Chaieb I, Ascrizzi R, Flamini G, Harrath AH, Jannet HB, Zardi-Bergaoui A. Chemical Composition and Insecticidal Activity against Tribolium Castaneum of Thapsia garganica L. Seed Essential Oil. Chem Biodivers 2023; 20:e202200646. [PMID: 36649489 DOI: 10.1002/cbdv.202200646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Due to the several side effects of synthetic pesticides, including environmental pollution, threats to human health, and the development of pest resistance to insecticides, the use of alternative healthy, available and efficient agents in pest management strategies is necessary. Recently, the use of essential oil obtained from aromatic plants has shown significant potential for insect pest management. For this reason, the essential oil isolated from seeds of Thapsia garganica L. was investigated for the first time for its chemical profile, and its toxicity and repellency effects against Tribolium castaneum adults. Qualitative and quantitative analyses of the chemical composition by gas chromatography coupled to mass spectrometry (GC/MS) revealed the presence of 18 organic volatiles representing 96.8 % of the total constituents. The main compounds were 1,4-dimethylazulene (51.3 %) followed by methyl palmitate (8.2 %), methyl linoleate (6.2 %) and costol (5.1 %). Concerning the repellent effect, results revealed that SEO (Seed Essential Oil) was very repellent towards T. castaneum adults, with 100 % repellency after 2 h of exposure. Furthermore, the essential oil exhibited remarkable contact toxicity against T. castaneum (93.3 % of mortality) at the concentration of 10 % (v/v). The median lethal dose (LD50 ) of the topical application of the seed essential oil was 4.4 %. These encouraging outcomes suggested that the essential oil from T. garganica seeds could be considered a potent natural alternative to residual persistent and toxic insecticides.
Collapse
Affiliation(s)
- Eya Khemis
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Mayssa Ben Mustapha
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Ikbel Chaieb
- University of Sousse, Regional Center of Research on Horticulture and Organic Agriculture, 57, ChottMariem, TN-4042, Sousse, Tunisia
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" Nutrafood, University of Pisa, Italy
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" Nutrafood, University of Pisa, Italy
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Afifa Zardi-Bergaoui
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
8
|
Rock Samphire, a Candidate Crop for Saline Agriculture: Cropping Practices, Chemical Composition and Health Effects. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent market trends for functional healthy foods have rekindled the interest in wild edible species and created a market niche for high added value products. The current supply, mainly supported by plants collected from the wild, cannot meet increasing market needs; therefore, it is of major importance to establish cropping protocols and further valorize wild plants for culinary and industrial applications. Sea fennel is a wild edible halophyte that is an important ingredient in local cuisines and is also used in folk medicine for its beneficial health effects. Its valorization has not been commercially explored on a great scale and more efforts are needed to integrate the species in farming systems. The present review compiles the most recent reports regarding the farming practices that could allow for the establishment of cultivation protocols for farmers, while the main constraints that hinder the further exploitation of the species are also presented. Moreover, this review presents the most up-to-date information regarding the chemical composition (e.g., chemical composition of the aerial parts and volatile compounds in essential oils) and the health-related effects of various plant parts (e.g., antimicrobial, insecticidal and anticholinesterase activities) aiming to reveal possible alternative uses that will increase the added value of the species and will contribute to its commercial exploitation. Finally, the future remarks and the guidelines that have to be followed are also discussed.
Collapse
|