1
|
Zhang JN, Pei ZD, Wang WY, Zhao MY, Pei WH, Zhang H, Yin HB, Wang TM, Xin GZ, Xie M, Kang TG, Chen YH, Song HP. Integration of High-Resolution LC-Q-TOF Mass Spectrometry and Multidimensional Chemical-Biological Analysis to Detect Nanomolar-Level Acetylcholinesterase Inhibitors from Different Parts of Zanthoxylum nitidum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17328-17342. [PMID: 39045647 DOI: 10.1021/acs.jafc.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Zanthoxyli radix is a popular tea among the elderly, and it is believed to have a positive effect on Alzheimer's disease. In this study, a highly effective three-step strategy was proposed for comprehensive analysis of the active components and biological functions of Zanthoxylum nitidum (ZN), including high-resolution LC-Q-TOF mass spectrometry (HRMS), multivariate statistical analysis for heterogeneity (MSAH), and experimental and virtual screening for bioactivity analysis (EVBA). A total of 117 compounds were identified from the root, stem, and leaf of ZN through HRMS. Bioactivity assays showed that the order of acetylcholinesterase (AChE) inhibitory activity from strong to weak was root > stem > leaf. Nitidine, chelerythrine, and sanguinarine were found to be the main differential components of root, stem, and leaf by OPLS-DA. The IC50 values of the three compounds are 0.81 ± 0.02, 0.14 ± 0.01, and 0.48 ± 0.01 μM respectively, indicating that they are potent and high-quality AChE inhibitors. Molecular docking showed that pi-pi T-shaped interactions and pi-lone pairs played important roles in AChE inhibition. This study not only explains the biological function of Zanthoxyli radix in alleviating Alzheimer's disease to some extent, but also lays the foundation for the development of stem and leaf of ZN.
Collapse
Affiliation(s)
- Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zhi-Dong Pei
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Yu Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Han Pei
- Macau University of Science and Technology, Macau 999078, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tian-Min Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
2
|
He M, Yasin K, Yu S, Li J, Xia L. Total Flavonoids in Artemisia absinthium L. and Evaluation of Its Anticancer Activity. Int J Mol Sci 2023; 24:16348. [PMID: 38003540 PMCID: PMC10671751 DOI: 10.3390/ijms242216348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
To overcome the shortcomings of traditional extraction methods, such as long extraction time and low efficiency, and considering the low content and high complexity of total flavonoids in Artemisia absinthium L., in this experiment, we adopted ultrasound-assisted enzymatic hydrolysis to improve the yield of total flavonoids, and combined this with molecular docking and network pharmacology to predict its core constituent targets, so as to evaluate its antitumor activity. The content of total flavonoids in Artemisia absinthium L. reached 3.80 ± 0.13%, and the main components included Astragalin, Cynaroside, Ononin, Rutin, Kaempferol-3-O-rutinoside, Diosmetin, Isorhamnetin, and Luteolin. Cynaroside and Astragalin exert their cervical cancer inhibitory functions by regulating several signaling proteins (e.g., EGFR, STAT3, CCND1, IGFIR, ESR1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the anticancer activity of both compounds was associated with the ErbB signaling pathway and FoxO signaling pathway. MTT results showed that total flavonoids of Artemisia absinthium L. and its active components (Cynaroside and Astragalin) significantly inhibited the growth of HeLa cells in a concentration-dependent manner with IC50 of 396.0 ± 54.2 μg/mL and 449.0 ± 54.8 μg/mL, respectively. Furthermore, its active components can mediate apoptosis by inducing the accumulation of ROS.
Collapse
Affiliation(s)
| | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.H.); (K.Y.); (S.Y.)
| |
Collapse
|
3
|
Ouyang X, Ma J, Liu Y, Li P, Wei R, Chen Q, Weng L, Chen Y, Li Y. Foliar cadmium uptake, transfer, and redistribution in Chili: A comparison of foliar and root uptake, metabolomic, and contribution. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131421. [PMID: 37080031 DOI: 10.1016/j.jhazmat.2023.131421] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Atmospheric deposition is an essential cadmium (Cd) pollution source in agricultural ecosystems, entering crops via roots and leaves. In this study, atmospherically deposited Cd was simulated using cadmium sulfide nanoparticles (CdSN), and chili (Capsicum frutescens L.) was used to conduct a comparative foliar and root experiment. Root and foliar uptake significantly increased the Cd content of chili tissues as well as the subcellular Cd content. Scanning electron microscopy and high-resolution secondary ion mass spectrometry showed that Cd that entered the leaves via stomata was fixed in leaf cells, and the rest was mainly through phloem transport to the other organs. In leaf, stem, and root cell walls, Cd signal intensities were 47.4%, 72.2%, and 90.0%, respectively. Foliar Cd uptake significantly downregulated purine metabolism in leaves, whereas root Cd uptake inhibited stilbenoid, diarylheptanoid, and gingerol biosynthesis in roots. Root uptake contributed 90.4% Cd in fruits under simultaneous root and foliar uptake conditions attributed to xylem and phloem involvement in Cd translocation. Moreover, root uptake had a more significant effect on fruit metabolic pathways than foliar uptake. These findings are critical for choosing pollution control technologies and ensuring food security.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Li R, Liu K, Liang Z, Luo H, Wang T, An J, Wang Q, Li X, Guan Y, Xiao Y, Lv C, Zhao M. Unpruning improvement the quality of tea through increasing the levels of amino acids and reducing contents of flavonoids and caffeine. Front Nutr 2022; 9:1017693. [PMID: 36245481 PMCID: PMC9558131 DOI: 10.3389/fnut.2022.1017693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tea tree [Camellia sinensis var. sinensis or assamica (L.) O. Kuntze], an important crop worldwide, is usually pruned to heights of 70 to 80 cm, forming pruned tea tree (PTT) plantations. Currently, PTTs are transformed into unpruned tea tree (UPTT) plantations in Yunnan, China. This has improved the quality of tea products, but the underlying reasons have not been evaluated scientifically. Here, 12 samples of sun-dried green teas were manufactured using fresh leaves from an UPTT and the corresponding PTT. Using sensory evaluation, it was found that the change reduced the bitterness and astringency, while increasing sweetness and umami. Using high performance liquid chromatography detection showed that the contents of free amino acids (theanine, histidine, isoleucine and phenylalanine) and catechin gallate increased significantly (P < 0.05), whereas the content of alanine decreased significantly (P < 0.05). A liquid chromatography–mass spectrometry-based metabolomics analysis showed that the transformation to UPTT significantly decreased the relative levels of the majority of flavonols and tannins (P < 0.05), as well as γ-aminobutyric acid, caffeine and catechin (epigallocatechin, catechin, epigallocatechin gallate, gallocatechin gallate), while it significantly increased the relative contents of catechins (gallocatechin, epicatechin, epicatechin gallate and catechin gallate), phenolic acids and some amino acids (serine, oxidized glutathione, histidine, aspartic acid, glutamine, lysine, tryptophan, tyramine, pipecolic acid, and theanine) (P < 0.05). In summary, after transforming to UPTT, levels of amino acids, such as theanine increased significantly (P < 0.05), which enhanced the umami and sweetness of tea infusions, while the flavonoids (such as kaempferol, myricetin and glycosylated quercetin), and caffeine contents decreased significantly (P < 0.05), resulting in a reduction in the bitterness and astringency of tea infusions and an increase in tea quality.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Kunyi Liu
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, China
| | - Zhengwei Liang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hui Luo
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Teng Wang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jiangshan An
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Qi Wang
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xuedan Li
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yanhui Guan
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yanqin Xiao
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Caiyou Lv
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Caiyou Lv,
| | - Ming Zhao
- College of Tea Science and College of Food Science and Technology and College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Ming Zhao,
| |
Collapse
|
5
|
Liao W, Liu S, Chen Y, Kong Y, Wang D, Wang Y, Ling T, Xie Z, Khalilova I, Huang J. Effects of Keemun and Dianhong Black Tea in Alleviating Excess Lipid Accumulation in the Liver of Obese Mice: A Comparative Study. Front Nutr 2022; 9:849582. [PMID: 35369079 PMCID: PMC8967360 DOI: 10.3389/fnut.2022.849582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Graphical AbstractSchematic diagram of the effects of two black teas in alleviating excess hepatic lipid accumulation.
Collapse
Affiliation(s)
- Wenjing Liao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Suyu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunxi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yashuai Kong
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tiejun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Irada Khalilova
- Life Sciences Department, Center for Cell Pathology Research, Khazar University, Baku, Azerbaijan
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Jinbao Huang
| |
Collapse
|
6
|
Li Y, Chen N, Li W, Lou H, Li Y, Xiong Q, Bai R, Wang J, Hu Y, Ren D, Yi L. Chemical profiling of ancient bud black tea with a focus on the effects of shoot maturity and fermentation by UHPLC-HRMS. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|