1
|
Wang S, Wang SQ, Chen XB, Xu Q, Deng H, Teng QX, Chen ZS, Zhang X, Chen FE. Cell-Based Screen Identifies a Highly Potent and Orally Available ABCB1 Modulator for Treatment of Multidrug Resistance. J Med Chem 2024; 67:18764-18780. [PMID: 39425773 DOI: 10.1021/acs.jmedchem.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Targeting ABCB1 is a promising strategy in combating multidrug resistance. Our cell-based phenotypic screening led to the discovery of novel triazolo[1,5-a]pyrimidone-based ABCB1 modulators. Notably, WS-917 was identified as a significant contributor to heightened sensitization of human colorectal adenocarcinoma cells (SW620/Ad300) to paclitaxel (IC50 = 5 nM). Mechanistic elucidation revealed that this compound substantially augmented intracellular paclitaxel and [3H]-paclitaxel, concurrently mitigating the efflux of [3H]-paclitaxel in SW620/Ad300 through the inhibition of ABCB1 efflux. The cellular thermal shift assay underscored its ability to stabilize ABCB1 through direct binding. Additionally, WS-917 induced stimulation of ABCB1 ATPase activity while exhibiting negligible inhibitory effect against CYP3A4. Remarkable was its capacity to enhance the sensitivity of SW620/Ad300 to paclitaxel, as well as the sensitivity of CT26/TAXOL to paclitaxel and PD-L1 inhibitor (Atezolizumab) in vivo, all achieved without inducing observable toxicity. The discovery of WS-917 holds promise for the development of more potent ABCB1 modulators.
Collapse
Affiliation(s)
- Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Qian Xu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Hao Deng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Paronikyan EG, Dashyan SS, Mamyan SS, Paronikyan RG, Nazaryan IM, Balyan KV, Gasparyan HV, Buloyan SA, Hunanyan LS, Hobosyan NG. Synthesis and Psychotropic Properties of Novel Condensed Triazines for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:829. [PMID: 39065680 PMCID: PMC11280098 DOI: 10.3390/ph17070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The exploration of heterocyclic compounds and their fused analogs, featuring key pharmacophore fragments like pyridine, thiophene, pyrimidine, and triazine rings, is pivotal in medicinal chemistry. These compounds possess a wide array of biological activities, making them an intriguing area of study. The quest for new neurotropic drugs among derivatives of these heterocycles with pharmacophore groups remains a significant research challenge. The aim of this research work was to develop a synthesis method for new heterocyclic compounds, evaluate their neurotropic and neuroprotective activities, study histological changes, and perform docking analysis. Classical organic synthesis methods were used in the creation of novel heterocyclic systems containing pharmacophore rings. To evaluate the neurotropic activity of these synthesized compounds, a range of biological assays were employed. Docking analysis was conducted using various software packages and methodologies. The neuroprotective activity of compound 13 was tested in seizures with and without pentylenetetrazole (PTZ) administration. Histopathological examinations were performed in different experimental groups in the hippocampus and the entorhinal cortex. As a result of chemical reactions, 16 new, tetra- and pentacyclic heterocyclic compounds were obtained. The biologically studied compounds exhibited protection against PTZ seizures as well as some psychotropic effects. The biological assays evidenced that 13 of the 16 studied compounds showed a high anticonvulsant activity by antagonism with PTZ. The toxicity of the compounds was low. According to the results of the study of psychotropic activity, it was found that the selected compounds have a sedative effect, except compound 13, which exhibited activating behavior and antianxiety effects (especially compound 13). The studied compounds exhibited antidepressant effects, especially compound 13, which is similar to diazepam. Histopathological examination showed that compound 13 produced moderate changes in the brain and exhibited neuroprotective effects in the entorhinal cortex against PTZ-induced damage, reducing gliosis and neuronal loss. Docking studies revealed that out of 16 compounds, 3 compounds bound to the γ-aminobutyric acid type A (GABAA) receptor. Thus, the selected compounds demonstrated anticonvulsant, sedative, and activating behavior, and at the same time exhibited antianxiety and antidepressant effects. Compound 13 bound to the GABAA receptor and exhibited antianxiety, antidepressant, and neuroprotective effects in the entorhinal cortex against PTZ-induced changes.
Collapse
Affiliation(s)
- Ervand G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Shushanik Sh. Dashyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| | - Suren S. Mamyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Ruzanna G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Ivetta M. Nazaryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Kristine V. Balyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Hrachik V. Gasparyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| | - Sona A. Buloyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| | - Lernik S. Hunanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Nina G. Hobosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| |
Collapse
|
3
|
Shinya S, Kawai K, Kobayashi N, Karuo Y, Tarui A, Sato K, Otsuka M, Omote M. Pentafluorosulfanyl-substituted biaryl derivatives as MATE-type transporter inhibitors targeting drug-resistant bacteria. Bioorg Med Chem 2024; 99:117606. [PMID: 38262304 DOI: 10.1016/j.bmc.2024.117606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Multidrug and toxin extrusion (MATE) inhibitors improve the antimicrobial susceptibility of drug-resistant bacteria by preventing the efflux of administered antibiotics. In this study, we optimized the chemical structure of a previously identified bacterial-selective MATE inhibitor 1 (EC50 > 30 µM) to improve its activity further. Compound 1 was divided into three fragments (aromatic part, linker part, and guanidine part), and each part was individually optimized. Compound 31 (EC50 = 1.8 µM), a novel pentafluorosulfanyl-containing molecule synthesized following optimized parts, showed antimicrobial activity against MATE-expressing strains at concentrations lower than conventional inhibitor 1 when co-administrated with norfloxacin. Furthermore, 31 was not cytotoxic at effective concentrations. This suggests that compound 31 can be a promising candidate for combating bacterial infections, particularly those resistant to conventional antibiotics by MATE expression.
Collapse
Affiliation(s)
- Susumu Shinya
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Naoki Kobayashi
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Masato Otsuka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
4
|
Hu Z, Dong H, Si Z, Zhao Y, Liang Y. Synthesis and Antibacterial Activity of Novel Triazolo[4,3- a]pyrazine Derivatives. Molecules 2023; 28:7876. [PMID: 38067606 PMCID: PMC10708386 DOI: 10.3390/molecules28237876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Infectious diseases pose a major challenge to human health, and there is an urgent need to develop new antimicrobial agents with excellent antibacterial activity. A series of novel triazolo[4,3-a]pyrazine derivatives were synthesized and their structures were characterized using various techniques, such as melting point, 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. All the synthesized compounds were evaluated for in vitro antibacterial activity using the microbroth dilution method. Among all the tested compounds, some showed moderate to good antibacterial activities against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains. In particular, compound 2e exhibited superior antibacterial activities (MICs: 32 μg/mL against Staphylococcus aureus and 16 μg/mL against Escherichia coli), which was comparable to the first-line antibacterial agent ampicillin. In addition, the structure-activity relationship of the triazolo[4,3-a]pyrazine derivatives was preliminarily investigated.
Collapse
Affiliation(s)
| | | | | | | | - Yuanwei Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.H.)
| |
Collapse
|
5
|
Lv M, Gao Y, Cai Z, Tang Z, Zhang Y, Wang T, Li W. A theoretical study on the excited state behavior of a series of novel triazole pyrimidine group fluorophores: ESIPT or ICT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122706. [PMID: 37054571 DOI: 10.1016/j.saa.2023.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/14/2023]
Abstract
Fluoropurine analogues are a kind of unnatural bases, which are widely used in chemistry, biological science, pharmacy and other fields. At the same time, fluoropurine analogues of aza-heterocycles play an important role in medicinals research and development. In this work, the excited state behavior of a group of newly developed fluoropurine analogues of aza-heterocycles, triazole pyrimidinyl fluorophores, was comprehensively studied. The reaction energy profiles indicate that excited state intramolecular proton transfer (ESIPT) is difficult to happen, which is further proved by fluorescent spectra results. This work proposed a new and reasonable fluorescence mechanism based on the original experiment, and found that the large Stokes shift of the triazole pyrimidine fluorophore is due to the intramolecular charge transfer (ICT) process of the excited state. Our new discovery is of great significance for the application of this group of fluorescent compounds in other fields and the regulation of fluorescence properties.
Collapse
Affiliation(s)
- Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yue Gao
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Zexu Cai
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Zhe Tang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yuhang Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Tingting Wang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Wenze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| |
Collapse
|