1
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
2
|
Teimouri M, Raju S, Acheampong E, Schmittou AN, Donnadieu B, Wipf DO, Pierce BS, Stokes SL, Emerson JP. Aminoquinoline-Based Tridentate ( NNN)-Copper Catalyst for C-N Bond-Forming Reactions from Aniline and Diazo Compounds. Molecules 2024; 29:730. [PMID: 38338473 PMCID: PMC10856582 DOI: 10.3390/molecules29030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C-N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C-N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C-O or C-S bond formation under optimized conditions.
Collapse
Affiliation(s)
- Mohsen Teimouri
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Selvam Raju
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Allison N. Schmittou
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - David O. Wipf
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Brad S. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, 3097D Shelby Hall, Tuscaloosa, AL 35487, USA
| | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA (B.D.); (D.O.W.)
| |
Collapse
|
3
|
Raju S, Teimouri M, Adhikari B, Donnadieu B, Stokes SL, Emerson JP. Copper complexes for the chemoselective N-arylation of arylamines and sulfanilamides via Chan-Evans-Lam cross-coupling. Dalton Trans 2023; 52:15986-15994. [PMID: 37847415 DOI: 10.1039/d3dt02659k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Copper(II) complexes with tridentate NNN-ligands were utilized for Chan-Evans-Lam (CEL) cross-coupling reactions to enable the N-arylation of multifarious N-nucleophiles through the activation of aryl boronic acids. A condition-specific methodology was developed to chemoselectively target the amine versus sulfonamide N-arylation of 4-aminobenzenesulfonamide using new catalysts. Two different pyridine-based ligands and corresponding copper(II) complexes were characterized using 1H and 13C-NMR, FTIR, and UV-vis spectroscopy, HRMS, single-crystal X-ray diffraction, and cyclic voltammetry. Solvent and base-controlled cross-coupling reactions were observed, which led to the optimization of selective conditions for targeted C-N bond formation of sulfanilamides. Beyond the chemoselective processes reported here, a breadth of N-nucleophiles including sulfanilamides and arylamines were screened for arylation by this CEL catalyst.
Collapse
Affiliation(s)
- Selvam Raju
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Mohsen Teimouri
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Bhupendra Adhikari
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Sean L Stokes
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|