Mekky AEM, Sanad SMH. New Bis(pyrazolo[5,1-b]quinazolines) and Bis(9H-xanthenediones) Linked to Alkane Cores: One-Pot Synthesis, Antibacterial Screening, and SAR Study.
Chem Biodivers 2024:e202401700. [PMID:
39284770 DOI:
10.1002/cbdv.202401700]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 10/27/2024]
Abstract
Effective one-pot methods were used to synthesize some new alkane-linked bis(pyrazolo[5,1-b]quinazolines) and bis(9H-xanthenediones). The first series was produced, in 80-88 % yields, via the reaction of one equivalent of the appropriate bis(aldehydes) with two equivalents of 1H-pyrazole-3,5-diamine and dimedone in DMF at 150 °C for 5-6 h. The second series was prepared, in 82-89 % yields, via the reaction one equivalent of the appropriate bis(aldehydes) with four equivalents of dimedone in acetic acid at 120 °C for 4-5 h. The new products displayed a broad range of antibacterial activity against different bacterial strains. Generally, the antibacterial activity of the alkane-linked bis(pyrazolo[5,1-b]quinazoline) units is more than 2-fold their bis(9H-xanthenedione) analogues. The (p-tolylthio)methyl)-linked bis(pyrazolo[5,1-b]quinazolines) demonstrate the best antibacterial activity with MIC/MBC values up to 3.3/6.6 μM.
Collapse