1
|
Fu Y, Wang H, Liu Z, Wang H, Zhao M, Li Z, Guo S. Widely Targeted Metabolomics Analysis Revealed the Component Differences of Hemerocallis citrina Borani in Different Production Areas of Datong. Foods 2024; 13:3404. [PMID: 39517188 PMCID: PMC11545560 DOI: 10.3390/foods13213404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hemerocallis citrina Borani (H. citrina) has garnered significant attention due to its abundant nutritional quality. Datong, located in Shanxi Province, is recognized as one of the four major production regions for high-quality H. citrina. While Datong boasts multiple production areas, the nutritional composition of daylilies varies across regions due to environmental factors and planting patterns, which remain unclear. This study focuses on the total polyphenol and flavonoid contents (TPCs and TFCs) and protein content of H. citrina from three areas in Datong: Sanshilipu (DTSSLP), Dangliuzhuang (DTDLZ), and Jijiazhuang (DTJJZ). Additionally, a widely targeted metabolomics analysis was used to analyze the metabolite composition of H. citrina from these three areas. The results showed that H. citrina in DTSSLP had the highest contents of protein and amino acids, as well as TPCs and TFCs. A total of 798 differential metabolites were identified in H. citrina across the areas, with DTSSLP showing the highest levels of different classifications of metabolites, indicating its enhanced health benefits and physiological activities. Nine metabolic pathways were related with the different characteristics among DTSSLP, DTDLZ, and DTJJZ. This study provides theoretical support for distinguish H. citrina from different producing regions and elucidates the mechanisms underlying its metabolic pathways.
Collapse
Affiliation(s)
- Yongxia Fu
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China; (H.W.); (M.Z.); (Z.L.)
| | - Haizhen Wang
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China; (H.W.); (M.Z.); (Z.L.)
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhenyu Liu
- College of Biomass Science & Engineering, Sichuan University, Chengdu 610065, China;
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Mengying Zhao
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China; (H.W.); (M.Z.); (Z.L.)
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhihao Li
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China; (H.W.); (M.Z.); (Z.L.)
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030031, China; (H.W.); (M.Z.); (Z.L.)
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Chen J, Li Y, Gu X, Wu T, Du H, Bai C, Yang J, Hu K. Identifying Anti-NSCLC Bioactive Compounds in Scutellaria via 2D NMR-Based Metabolomic Analysis of Pharmacologically Classified Crude Extracts. Chem Biodivers 2024; 21:e202400258. [PMID: 38581076 DOI: 10.1002/cbdv.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.
Collapse
Affiliation(s)
- Jialuo Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yanping Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Xiu Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Tianren Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Huan Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Caihong Bai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China Tel
| |
Collapse
|
3
|
Villa-Ruano N, Evangelista-Castro JD, Coyotl-Pérez WA, Pacheco-Hernández Y, Lozoya-Gloria E, Varela-Caselis JL, Mosso-González C, Ramírez-García SA. "Delaying Rot Emergence in Persian Lime (Citrus×latifolia) Through Antifungal Hybrid Films Containing Litsea glaucescens Essential Oil". Chem Biodivers 2024; 21:e202301689. [PMID: 38224527 DOI: 10.1002/cbdv.202301689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Herein we describe the in situ inhibitory activity of three hybrid films (FL1, FL2, and FL3) against two wild strains of Colletotrichum gloeosporioides and Penicillium digitatum as causal agents of rot in Persian limes. The films FL2 and FL3 contained 1.0 and 1.3 % weight/volume Litsea glaucescens essential oil (LgEO) and significantly (p<0.05) delayed rot emergence in Persian limes caused by both pathogens up to 10 days. The physicochemical properties of LgEO and hybrid films were obtained, whereas detailed HPLC profiling revealed that fruit covered with these films significantly (p<0.01) preserved reducing sugars (sucrose, fructose, and glucose), organic acids (citric acid, ascorbic acid, malic acid, and oxalic acid), and flavonoids with nutraceutical activity (hesperidin, eriocitrin, naruritin, neohesperidin, diosmin, vitexin, rutin, and quercetin). This evidence sustains that the composites generated in this investigation improve the shelf life of Persian limes and conserve their nutraceutical content.
Collapse
Affiliation(s)
- Nemesio Villa-Ruano
- CONAHCyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio Ciudad Universitaria, Col. Jardines de San Manuel, CP 72000, Puebla, México
| | - Juan Daniel Evangelista-Castro
- Facultad de Biología, Benemérita Universidad Autónoma de Puebla, Av. San Claudio Ciudad Universitaria, Col. Jardines de San Manuel, CP 72000, Puebla, México
| | - Wendy Abril Coyotl-Pérez
- Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda, San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, CP 90700, Tlaxcala, Mexico
| | - Yesenia Pacheco-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapua-to-León, Guanajuato, 36824, Mexico
| | - Edmundo Lozoya-Gloria
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapua-to-León, Guanajuato, 36824, Mexico
| | - Jenaro Leocadio Varela-Caselis
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio Ciudad Universitaria, Col. Jardines de San Manuel, CP 72000, Puebla, México
| | - Clemente Mosso-González
- CONAHCyT-Centro Regional de Investigación en Salud Pública (CRISP), 4a. Av. Nte. esquina 19, Norte, Centro, CP, 30700, Tapachula, Chiapas, México
| | - Sergio A Ramírez-García
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad S/N Col ex-hacienda 5 señores, CP 68120, Oaxaca, México
| |
Collapse
|
4
|
Liu J, Wang L, Jiang S, Wang Z, Li H, Wang H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. Int J Mol Sci 2023; 24:15311. [PMID: 37894991 PMCID: PMC10607095 DOI: 10.3390/ijms242015311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for grape breeding with high quality and disease resistance. The core theory of this method is the substitution accumulation of multi-genes with low disease resistance. The discovery of multi-genes for disease resistance in V. vinifera may provide a molecular basis for breeding for disease resistance in V. vinifera. In this study, resistance to downy mildew was identified, and genetic analysis was carried out in the intraspecific crossing population of V. vinifera (Ecolly × Dunkelfelder) to screen immune, highly resistant and disease-resistant plant samples; transcriptome sequencing and differential expression analysis were performed using high-throughput sequencing. The results showed that there were 546 differential genes (194 up-regulated and 352 down-regulated) in the immune group compared to the highly resistant group, and 199 differential genes (50 up-regulated and 149 down-regulated) in the highly resistant group compared to the resistant group, there were 103 differential genes (54 up-regulated and 49 down-regulated) in the immune group compared to the resistant group. KEGG analysis of differentially expressed genes in the immune versus high-resistance group. The pathway is mainly concentrated in phenylpropanoid biosynthesis, starch and sucrose metabolism, MAPK signaling pathway-plant, carotenoid biosyn-thesis and isoquinoline alkaloid biosynthesis. The differential gene functions of immune and resistant, high-resistant and resistant combinations were mainly enriched in plant-pathogen interaction pathway. Through the analysis of disease resistance-related genes in each pathway, the potential minor resistance genes in V. vinifera were mined, and the accumulation of minor resistance genes was analyzed from the molecular level.
Collapse
Affiliation(s)
- Junli Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Liang Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Shan Jiang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|