1
|
Zhang Q, Liang J, Li X, Li X, Xia B, Shi M, Zeng J, Huang H, Yang L, He J. Exploring antithrombotic mechanisms and effective constituents of Lagopsis supina using an integrated strategy based on network pharmacology, molecular docking, metabolomics, and experimental verification in rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118717. [PMID: 39181284 DOI: 10.1016/j.jep.2024.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombosis is a common cause of morbidity and mortality worldwide. Lagopsis supina (Stephan ex Willd.) Ikonn.-Gal. ex Knorring is an ancient Chinese herbal medicine used for treating thrombotic diseases. Nevertheless, the antithrombotic mechanisms and effective constituents of this plant have not been clarified. AIM OF THE STUDY This work aimed to elucidate the pharmacodynamics and mechanism of L. supina against thrombosis. MATERIALS AND METHODS Systematic network pharmacology was used to explore candidate effective constituents and hub targets of L. supina against thrombosis. Subsequently, the binding affinities of major constituents with core targets were verified by molecular docking analysis. Afterward, the therapeutic effect and mechanism were evaluated in an arteriovenous bypass thrombosis rat model. In addition, the serum metabolomics analysis was conducted using ultra-high performance liquid chromatography coupled with Q-Exactive mass spectrometry. RESULTS A total of 124 intersected targets of L. supina against thrombosis were predicted. Among them, 24 hub targets were obtained and their mainly associated with inflammation, angiogenesis, and thrombosis approaches. Furthermore, 9 candidate effective constituents, including (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol, aurantiamide, (22E,24R)-5α,8α-epidioxyergosta-6,9 (11),22-trien-3β-ol, lagopsinA, lagopsin C, 15-epi-lagopsin C, lagopsin D, 15-epi-lagopsin D, and lagopsin G in L. supina and 6 potential core targets (TLR-4, TNF-α, HIF-1α, VEGF-A, VEGFR-2, and CLEC1B) were acquired. Then, these 9 constituents demonstrated strong binding affinities with the 6 targets, with their lowest binding energies were all less than -5.0 kcal/mol. The antithrombotic effect and potential mechanisms of L. supina were verified, showing a positively associated with the inhibition of inflammation (TNF-α, IL-1β, IL-6, IL-8, and IL-10) and coagulation cascade (TT, APTT, PT, FIB, AT-III), promotion of angiogenesis (VEGF), suppression of platelet activation (TXB2, 6-keto-PGF1α, and TXB2/6-keto-PGF1α), and prevention of fibrinolysis (t-PA, u-PA, PAI-1, PAI-1/t-PA, PAI-1/u-PA, and PLG). Finally, 14 endogenous differential metabolites from serum samples of rats were intervened by L. supina based on untargeted metabolomics analysis, which were closely related to amino acid metabolism, inflammatory and angiogenic pathways. CONCLUSION Our integrated strategy based on network pharmacology, molecular docking, metabolomics, and in vivo experiments revealed for the first time that L. supina exerts a significant antithrombotic effect through the inhibition of inflammation and coagulation cascade, promotion of angiogenesis, and suppression of platelet activation. This paper provides novel insight into the potential of L. supina as a candidate agent to treat thrombosis.
Collapse
Affiliation(s)
- Qingcui Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiaomei Li
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Bowei Xia
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Jinxiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Junwei He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
2
|
Wang H, Mu Z, Liang J, Li X, Yang L, He J. Hosta plantaginea (Lam.) Aschers flower modulates inflammation and amino acid metabolism by inhibiting NF-κB/MAPK/JAK-STAT/PI3K-Akt and AMPK pathways to alleviate benign prostatic hyperplasia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118970. [PMID: 39433163 DOI: 10.1016/j.jep.2024.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH) is the most common urogenital disease in men with no definitive treatment. Inflammation, androgen imbalance, and oxidative stress play crucial roles in the pathogenesis of BPH. The flower of Hosta plantaginea (Lam.) Ascher is a pivotal medicinal plant in China, used to treat BPH. However, its effect and mechanism against BPH have not been clear. AIM OF THE STUDY Our aim was to decipher the pharmacodynamics and mechanisms of H. plantaginea flower against BPH. MATERIALS AND METHODS The extract yields and HPLC-based chemoprofile of ethanolic extract (HP) and total flavonoid (TF) of H. plantaginea flowers were used as reference standard to ensure their quality. The testosterone propionate-induced BPH rat model was used to assess the effects of HP and TF. Protein expression, metabolomics, and network pharmacology analyses were performed. RESULTS Twenty constituents were identified in both HP and TF, with four quantitatively analyzed using the HPLC method. HP and TF demonstrated significant therapeutic effects on BPH, including reduced prostate size and prostatic index, improved pathological injury of prostate, as well as increased levels of testosterone, superoxide dismutase, glutathione, and glutathione peroxidase, along with decreased levels of dihydrotestosterone, 5 alpha-reductase, epidermal growth factor, TNF-α, IL-1β, IL-6, and malondialdehyde. Western blotting assay indicated that HP and TF prominently inhibited the protein expression of phosphorylated p65, IκBα, JNK, p38, Erk1/2, JAK1, STAT3, PI3K, Akt, and AMPKα1 in a dose-dependent manner. Integrating metabolomics and network pharmacology analyses revealed that HP and TF observably regulated 30 differential metabolites and 11 hub genes across the aforementioned pathways, which are closely associated with amino acid metabolism. CONCLUSION The proposed comprehensive strategy of in vivo experiments, metabolomics, and network pharmacology studies has demonstrated that HP and TF could alleviate BPH injury in rats by suppressing inflammation, androgen imbalance, oxidative stress, and amino acid metabolism through the inhibition of NF-κB, MAPK, JAK-STAT, PI3K-Akt, and AMPK pathways, which provides novel insights into the potential of H. plantaginea flower as a treatment for BPH.
Collapse
Affiliation(s)
- Huilei Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Zhenqiang Mu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Jian Liang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiaomei Li
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
3
|
Wu YF, Zhao ZY, Yang MJ, He YH, Zang Y, Li J, Hu JF, Xiong J. Pentacyclic triterpenoids as potential ACL inhibitors from the rare medicinal plant Semiliquidambar cathayensis. Fitoterapia 2024; 176:106018. [PMID: 38744385 DOI: 10.1016/j.fitote.2024.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
An extensive phytochemical investigation on the rare medicinal plant Semiliquidambar cathayensis (family: Hamamelidaceae) led to the isolation of four new (1-4, named semiliquidacids A-D, respectively) and 25 related known pentacyclic triterpenoids. The new structures with absolute configurations were elucidated by spectroscopic methods, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Compound 1 represents the first naturally occurring ursane-type triterpenoid featuring an uncommon C-25 formyl group. Compound 4 and oleanolic acid (13) exhibited remarkable inhibitory effects against the ATP-citrate lyase (ACL, an emerging drug target for hyperlipidemia and related metabolic disorders) with IC50 values of 6.5 and 11.9 μM, respectively. The molecular interaction and binding mode between the bioactive triterpenoids and ACL were elaborated by conducting a molecular docking study. Meanwhile, the chemotaxonomic significance of the isolated triterpenoids has been briefly discussed.
Collapse
Affiliation(s)
- Yu-Fei Wu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China
| | - Min-Jie Yang
- Department of Emergency Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yu-Hang He
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, PR China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China.
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Plant-Based Approaches for Rheumatoid Arthritis Regulation: Mechanistic Insights on Pathogenesis, Molecular Pathways, and Delivery Systems. Crit Rev Ther Drug Carrier Syst 2024; 41:39-86. [PMID: 38305341 DOI: 10.1615/critrevtherdrugcarriersyst.2023048324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is classified as a chronic inflammatory autoimmune disorder, associated with a varied range of immunological changes, synovial hyperplasia, cartilage destructions, as well as bone erosion. The infiltration of immune-modulatory cells and excessive release of proinflammatory chemokines, cytokines, and growth factors into the inflamed regions are key molecules involved in the progression of RA. Even though many conventional drugs are suggested by a medical practitioner such as DMARDs, NSAIDs, glucocorticoids, etc., to treat RA, but have allied with various side effects. Thus, alternative therapeutics in the form of herbal therapy or phytomedicine has been increasingly explored for this inflammatory disorder of joints. Herbal interventions contribute substantial therapeutic benefits including accessibility, less or no toxicity and affordability. But the major challenge with these natural actives is the need of a tailored approach for treating inflamed tissues by delivering these bioactive agentsat an appropriate dose within the treatment regimen for an extended periodof time. Drug incorporated with wide range of delivery systems such as liposomes, nanoparticles, polymeric micelles, and other nano-vehicles have been developed to achieve this goal. Thus, inclinations of modern treatment are persuaded on the way to herbal therapy or phytomedicines in combination with novel carriers is an alternative approach with less adverse effects. The present review further summarizes the significanceof use of phytocompounds, their target molecules/pathways and, toxicity and challenges associated with phytomolecule-based nanoformulations.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
5
|
Wang L, Li P, Zhou Y, Gu R, Lu G, Zhang C. Magnoflorine Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response via the NF-κB/MAPK Signaling Pathways. J Inflamm Res 2023; 16:2271-2296. [PMID: 37265745 PMCID: PMC10231344 DOI: 10.2147/jir.s406298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Magnoflorine (Mag) has been reported to have anxiolytics, anti-cancer, and anti-inflammatory properties. In this study, we aim to investigate the effects of Mag on the rheumatoid arthritis (RA) and explore the underlying mechanism using a collagen-induced arthritis (CIA) mouse model and a lipopolysaccharide (LPS)-stimulated macrophage inflammation model. Methods The in vivo effects of Mag on CIA were studied by inducing CIA in a mouse model using DBA/1J mice followed by treatment with vehicle, methotrexate (MTX, 1 mg/kg/d), and Mag (5 mg/kg/d, 10 mg/kg/d, and 20 mg/kg/d), and the in vitro effects of Mag on macrophages were examined by stimulation of RAW264.7 cells line and peritoneal macrophages (PMs) by LPS in the presence of different concentrations of Mag. Network pharmacology and molecular docking was then performed to predict the the binding ability between Mag and its targets. Inflammatory mediators were assayed by quantitative real-time PCR and enzyme linked immunosorbent assay (ELISA). Signaling pathway changes were subsequently determined by Western blotting and immunohistochemistry (IHC). Results In vivo experiments demonstrated that Mag decreased arthritis severity scores, joints destruction, and macrophages infiltration into the synovial tissues of the CIA mice. Network pharmacology analysis revealed that Mag interacted with TNF-α, IL-6, IL-1β, and MCP-1. Consistent with this, analysis of the serum, synovial tissue of the CIA mice, and the supernatant of the cultured RAW264.7 cells and PMs showed that Mag suppressed the expression of TNF-α, IL-6, IL-1β, MCP-1, iNOS, and IFN-β. Furthermore, Mag attenuated the phosphorylation of p65, IκBα, ERK, JNK, and p38 MAPKs in the synovial tissues of the CIA mice and LPS-stimulated RAW 264.7 cells. Conclusion Mag may exert anti-arthritic and anti-inflammatory effects by inhibiting the activation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Lei Wang
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yu Zhou
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Ge Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Chunbing Zhang
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
6
|
Wang H, Wang K, Liu B, Bian X, Tan X, Jiang H. The efficacy of bone marrow mesenchymal stem cells on rat intestinal immune-function injured by ischemia/reperfusion. Heliyon 2023; 9:e15585. [PMID: 37131448 PMCID: PMC10149202 DOI: 10.1016/j.heliyon.2023.e15585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Background Transplantation of bone marrow mesenchymal stem cells (BMSCs) has a promising therapeutic efficiency for varieties of disorders caused by ischemia or reperfusion impairment. It has been shown that BMSCs can mitigate intestinal ischemia/reperfusion (I/R) injuries, but the underlying mechanism is still unclear. This study aimed at investigating the efficacy of BMSCs on the immune function of intestinal mucosal microenvironment after I/R injuries. Methods Twenty adult Sprague-Dawley rats were randomly assigned to a treatment or a control group. All the rats underwent superior mesenteric artery clamping and unclamping. In the treatment group, BMSCs were implanted into the intestine of ten rats by direct submucosal injection whereas the other ten rats in the control group were injected with the same volume of saline. On the fourth and seventh day after BMSCs transplantation, intestinal samples were examined for the CD4 (CD4-positive T-lymphocytes)/CD8 (CD8-positive T-lymphocytes) ratio of the bowel mucosa via flow cytometry, and for the level of Interleukin-2 (IL-2), Interleukin-4 (IL-4) and Interleukin-6 (IL-6) via ELISA. Paneth cell counts and Secretory Immunoglobulin A (SIgA) level were examined via immunohistochemical (IHC) analysis. Real time PCR (RT-PCR) was used to detect the expression levels of tumor necrosis factor-α (TNF-α) and trypsinogen (Serine 2) (PRSS2) genes. White blood cell (WBC) count was measured by manual counting under the microscope. Results The CD4/CD8 ratio in the treatment group was significantly lower compared with that in the control group. The concentration of IL-2 and IL-6 was lower in the treatment group compared with the control group, while the level of IL-4 is the reverse between the two groups. The number of Paneth cells in intestinal mucosa increased significantly, while the level of SIgA in intestinal mucosa decreased significantly, after BMSCs transplantation. The gene expression levels of TNF-α and PRSS2 in intestinal mucosa of treatment group were significantly lower than those of control group. The WBC count in the treatment group was significantly lower than that in the control group. Conclusion We identified immune-relevant molecular changes that may explain the mechanism of BMSCs transplantation efficacy in alleviating rat intestinal immune-barrier after I/R.
Collapse
Affiliation(s)
- He Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, China
| | - Kun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, China
| | - Bo Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoqian Bian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, China
| | - Haitao Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, China
- Corresponding author. No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|