1
|
Güleç M, Şenol H, Tan N. Novel Nordaucane Sesquiterpenoid and Sesquiterpene Lactone From Laserpitium Species: Isolation, Structure Elucidation, In Vitro, In Vivo, and In Silico Evaluation as Anticancer Agents. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39532479 DOI: 10.1002/pca.3472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION This study explores the cytotoxic activity-guided isolation of the underground parts of Laserpitium hispidum M. Bieb and Laserpitium petrophilum Boiss. & Heldr., which have not been previously investigated. OBJECTIVES The aim is to isolate and evaluate bioactive compounds from Laserpitium L. species with anticancer potential. MATERIAL AND METHODS This study involves bioactivity-guided isolation and structural studies of the pure compounds utilizing NMR, UV-Vis, IR spectroscopies, and HRMS. The cytotoxic activity of the isolated compounds was evaluated in vitro and in vivo, whereas molecular modeling, docking, and ADME predictions were conducted using Schrödinger software. RESULTS The study isolated phenylpropanoids (laserine (1), latifolone (2), myristicin (3)), sterol (stigmasterol (4)), polyenes (falcarindiol (5)), sesquiterpene lactone (11-hydroxybadkhyzin (6)), and nordaucane sesquiterpene (norlasidiol angelate (7)) from L. hispidum, whereas L. petrophilum yielded 10β-acetoxy-8α-angeloyloxy-6αH,7αH-guaian-3-en-12,6-olide (8), 10β-acetoxy-8α-senecioyloxy-6αH,7αH-guaian-3-en-6,12-olide (9) and acetylisomontanolide (10). Molecular docking simulations revealed stable interactions between compounds 7 and 9 with estrogen receptor α (ERα) and vascular endothelial growth factor receptor 2 (VEGFR2), with compound 7 showing superior stability and binding affinity. In silico ADME predictions indicated favorable pharmacokinetic properties, including high oral absorption. CONCLUSION Compounds 7 and 9, representing new nordaucane and sesquiterpene lactones, have not been previously reported. In vitro cytotoxicity revealed that compound 7 exhibits potent anti-cancer activity against MCF-7 cells, whereas compound 9 showed reduced cytotoxicity. In vivo testing in Caenorhabditis elegans supported these findings, suggesting safety and efficacy in organisms. In silico results emphasize the potential of these compounds, with compound 7 promising due to its stability and strong binding affinity.
Collapse
Affiliation(s)
- Meltem Güleç
- Department of Pharmacognosy, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
- Department of Pharmacognosy, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Nur Tan
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
2
|
Sobornova VV, Mulloyarova VV, Belov KV, Dyshin AA, Tolstoy PM, Kiselev MG, Khodov IA. Structural and sorption characteristics of an aerogel composite material loaded with flufenamic acid: insights from MAS NMR and high-pressure NOESY studies. Phys Chem Chem Phys 2024; 26:27301-27313. [PMID: 39439409 DOI: 10.1039/d4cp03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The structural and sorption characteristics of a composite material consisting of a silica aerogel loaded with flufenamic acid were investigated using a variety of nuclear magnetic resonance techniques. The composite structure was analyzed using magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, which revealed significant interactions between the aerogel matrix and the FFA molecules. Solid-state 29Si NMR provided insights into the aerogel's stability, while 1H and 13C NMR confirmed the presence of FFA in the matrix, with signals from FFA molecules observed alongside tetraethoxysilane (TEOS) groups. Ethanol-induced desorption of FFA led to narrowed spectral lines, suggesting the breaking of intermolecular hydrogen bonds. 19F MAS NMR spectra indicated changes in FFA local environments upon loading into AG pores. Evaluation of CO2 sorption characteristics using 13C NMR demonstrated a slower sorption rate for AG + FFA than that for pure AG, attributed to decreased pore volume. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) was employed to explore the conformational behavior of FFA within the aerogel matrix. The results indicated a shift in conformer populations, particularly those related to the rotation of one cyclic fragment relative to the other. These findings provide insights into the structural and sorption characteristics of the AG + FFA composite, which are valuable for developing novel drug solid forms.
Collapse
Affiliation(s)
- Valentina V Sobornova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Valeriya V Mulloyarova
- Institute of Chemistry, Saint Petersburg State University, 198504, Petergof, Universitetskii prospect, 26, Saint Petersburg, Russia
| | - Konstantin V Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Alexey A Dyshin
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Peter M Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 198504, Petergof, Universitetskii prospect, 26, Saint Petersburg, Russia
| | - Mikhail G Kiselev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaja st., 1, 153045, Ivanovo, Russia.
| |
Collapse
|
3
|
Toraman GÖA, Atasoy S, Şenol H, Şükran Okudan E, Öykü Dinç H, Topçu G. LC-MS and GC-MS Analyses on Green Algae Penicillus Capitatus: Cytotoxic, Antimicrobial and Anticholinesterase Activity Screening Enhanced by Molecular Docking & Dynamics and ADME Studies. Chem Biodivers 2024; 21:e202400915. [PMID: 38989544 DOI: 10.1002/cbdv.202400915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In this comprehensive screening study, the chemical composition, and cytotoxic, antimicrobial, and anticholinergic activities of the green algae Penicillus capitatus, collected from Antalya-Türkiye, were determined as in vitro and in silico. GC-MS analysis of the hexane extract revealed a high content of fatty acids, with hexadecanoic acid constituting half of the total fatty acid content. LC-HRMS analysis of the DCM:MeOH extract identified ascorbic acid as the most abundant compound, followed by (-)-epigallocatechin and salicylic acid. The DCM:MeOH extract exhibited potent cytotoxicity against MDA-MB-231 and MCF7 breast cancer cell lines, outperforming doxorubicin with lower IC50 values and a higher selectivity index. Additionally, the extract demonstrated significant antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, along with selective inhibition of acetylcholinesterase (hAChE) over butyrylcholinesterase (hBChE). Molecular docking and dynamics studies revealed that apigenin-7-O-glucoside and epigallocatechin form stable interactions with estrogen receptor alpha (ERα) and hAChE, suggesting their potential as inhibitors. In silico ADME studies indicated favorable pharmacokinetic profiles for the detected compounds, supporting their potential as drug candidates. The promising cytotoxic activity of the P. capitatus extracts, coupled with significant antimicrobial properties and selective hAChE inhibition, highlights their therapeutic potential for breast cancer treatment, infection management, and neurodegenerative disease intervention.
Collapse
Affiliation(s)
- Gülbahar Özge Alim Toraman
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University,34093, Fatih Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University,34093, Fatih Istanbul, Turkey
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University,34093, Fatih Istanbul, Turkey
| | - Emine Şükran Okudan
- Department of Marine Biology, Faculty of Fisheries, Akdeniz University,07058, Antalya, Turkey
| | - Harika Öykü Dinç
- Department of Microbiology, Faculty of Pharmacy, Bezmialem Vakif University,34093, Fatih Istanbul, Turkey
| | - Gülaçtı Topçu
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University,34093, Fatih Istanbul, Turkey
- Drug Application and Research Center, Bezmialem Vakif University,34093, Fatih Istanbul, Turkey
| |
Collapse
|
4
|
Tahirli S, Aliyeva F, Şenol H, Demukhamedova S, Akverdieva G, Aliyeva I, Veysova S, Sadeghian N, Günay S, Erden Y, Taslimi P, Sujayev A, Chiragov F. Novel complex compounds of nickel with 3-(1-phenyl-2,3-dimethyl-pyrazolone-5)azopentadione-2,4: synthesis, NBO analysis, reactivity descriptors and in silico and in vitro anti-cancer and bioactivity studies. J Biomol Struct Dyn 2024:1-25. [PMID: 38294759 DOI: 10.1080/07391102.2024.2309646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
A synthesized azo compound based on 4-amino antipyrine and its complexes with Ni(II) in solution and solid phase is reported. The structures of these compounds have been testified by IR and NMR spectroscopy. The combined experimental and theoretical approach was used. To study the structure and properties of the synthesized compound, as well as its possible complex formation with the Ni(II), ab initio quantum-chemical calculations were carried out using the Hartree-Fock (HF) method with the 6-31 G basis set and the electron density functional theory (DFT) method with hybrid three-parameter potential B3LYP and extended basis set 6-311++G(d,p) taking into account polarization and diffuse functions for all atoms. The geometric, energy, and electronic parameters were calculated and analyzed. The HOMO-LUMO energy gap has been calculated to determine chemical activity. Both complexes had effective inhibition against butyrylcholinesterase and acetylcholinesterase. IC50 values were found as 19.43 and 27.08 µM for AChE, 2.37 and 7.40 µM for BChE, respectively. For the anticancer outcome, high doses of compound E1 inhibited viability by about 40-45%, while this rate was around 65-70% for compound E2 at the same doses. Anticholinesterase and anticancer potential of compounds E1 and E2 also evaluated by in silico techniques. Both compounds show strong binding to VEGFR1, with E2 exhibiting superior inhibitory activity in hAChE and hBChE through shorter and stronger interactions. MD simulations suggest that E2 forms more stable complexes with hAChE and hBChE compared to E1, making it a promising candidate for further exploration in anticancer and anticholinesterase therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Fargana Aliyeva
- Institute of Chemistry of Additives named after acad. A. M. Guliyev, Baku, Azerbaijan
| | - Halil Şenol
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | | | - Gulnara Akverdieva
- Institute for Physical Problems, Baku State University, Baku, Azerbaijan
| | - Irada Aliyeva
- Institute for Physical Problems, Baku State University, Baku, Azerbaijan
| | | | - Nastaran Sadeghian
- Faculty of Science, Department of Biotechnology, Bartın University, Bartın, Türkiye
| | - Sevilay Günay
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Türkiye
| | - Yavuz Erden
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Türkiye
| | - Parham Taslimi
- Faculty of Science, Department of Biotechnology, Bartın University, Bartın, Türkiye
| | - Afsun Sujayev
- Institute of Chemistry of Additives named after acad. A. M. Guliyev, Baku, Azerbaijan
| | | |
Collapse
|
5
|
Tokalı FS, Şenol H, Yetke Hİ, Hacıosmanoğlu-Aldoğan E. Novel quinazoline-chromene hybrids as anticancer agents: Synthesis, biological activity, molecular docking, dynamics and ADME studies. Arch Pharm (Weinheim) 2023; 356:e2300423. [PMID: 37736677 DOI: 10.1002/ardp.202300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
In this study, new quinazoline-chromene hybrid compounds were synthesized. The cytotoxic effects on cell viability of the hybrid compounds were tested against A549 human lung adenocarcinoma and BEAS-2B healthy bronchial epithelial cell lines in vitro. In addition, the ability of the active compounds to inhibit cell migration was tested. Molecular docking studies were performed to evaluate the ligand-protein interactions, and molecular dynamics simulations were performed to determine the interactions and stability of ligand-protein complexes. In silico absorption, distribution, metabolism, and excretion (ADME) studies were conducted to estimate the drug-likeness of the compounds. Compounds 4 (IC50 = 51.2 µM) and 5 (IC50 = 44.2 µM) were found to be the most active agents against A549 cells. They are found to be more selective against A549 cells than the reference drug doxorubicin. They also have the ability to significantly inhibit cell migration. They have the best docking scores against epidermal growth factor receptor (EGFR) (-11.300 and -11.226 kcal/mol) and vascular endothelial growth factor receptor 2 (VEGFR2) (-10.987 and -11.247 kcal/mol), respectively. In MD simulations, compounds 4 and 5 have strong hydrogen bond interactions above 80% of simulation times and showed a low ligand root mean square deviation (RMSD) around 2 Å. According to the ADME analysis, compounds 4 and 5 exhibit excellent drug-likeness and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Hande İpek Yetke
- Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | | |
Collapse
|
6
|
ALİM TORAMAN GÖ, ŞENOL H, YAZICI TÜTÜNİŞ S, TAN N, TOPÇU G. Phytochemical analysis and molecular docking studies of two endemic varieties of Salvia sericeotomentosa. Turk J Chem 2023; 47:1260-1270. [PMID: 38173760 PMCID: PMC10760817 DOI: 10.55730/1300-0527.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
The use of medicinal plants for treating various diseases dates back thousands of years and has been a part of many cultures around the world. Various parts of plants, including roots, leaves, and flowers, and their extracts have been used to develop remedies to cure different ailments like fever, pain, inflammation, infections, among others. In this research, the aerial parts of both Salvia varieties were extracted with ethanol and water to obtain infusion and decoction, separately. S. sericeotomentosa var. hatayica Celep & Doğan (SH) and Salvia sericeotomentosa Rech. f. var. sericeotomentosa (ST) plants were chemically analyzed for polar compounds using LC-HRMS for the first time. All SH and ST extracts were found to be very rich in rosmarinic acid, salvianolic acid B, hispidulin-7-O-glucoside, and caffeic acid. The study also investigated the antiinflammatory and carbonic anhydrase inhibition properties of the most abundant secondary metabolites extracted from SH and ST. In silico studies were conducted for the first time to explore the effects of these metabolites on TNF-α, iNOS, and human carbonic anhydrase isoenzymes (hCAI and hCAII). Salvianolic acid B should be considered a strong antiinflammatory agent and a carbonic anhydrase I and II inhibitors due to low binding energy scores with the tested enzymes (TNF-α: -12.391 kcal/mol), (iNOS: -7.547 kcal/mol), (hCAI: -7.877 kcal/mol), and (hCAII: -4.312 kcal/mol).
Collapse
Affiliation(s)
- Gülbahar Özge ALİM TORAMAN
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmiâlem Vakıf University, İstanbul,
Turkiye
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul,
Turkiye
- Department of Pharmacognosy, Institute of Health Sciences, İstanbul University, İstanbul,
Turkiye
| | - Halil ŞENOL
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmiâlem Vakıf University, İstanbul,
Turkiye
| | - Seçil YAZICI TÜTÜNİŞ
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul,
Turkiye
- Center for Research and Practice in Drug Development from Natural Sources, İstanbul University, İstanbul,
Turkiye
| | - Nur TAN
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul,
Turkiye
- Center for Research and Practice in Drug Development from Natural Sources, İstanbul University, İstanbul,
Turkiye
| | - Gülaçtı TOPÇU
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmiâlem Vakıf University, İstanbul,
Turkiye
- Drug Application and Research Center (DARC), Bezmiâlem Vakif University, İstanbul,
Turkiye
| |
Collapse
|
7
|
Şenol H, Ghaffari-Moghaddam M, Bulut Ş, Akbaş F, Köse A, Topçu G. Synthesis and Anticancer Activity of Novel Derivatives of α,β-Unsaturated Ketones Based on Oleanolic Acid: in Vitro and in Silico Studies against Prostate Cancer Cells. Chem Biodivers 2023; 20:e202301089. [PMID: 37596247 DOI: 10.1002/cbdv.202301089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Herein, new derivatives of α,β-unsaturated ketones based on oleanolic acid (4 a-i) were designed, synthesized, characterized, and tested against human prostate cancer (PC3). According to the in vitro cytotoxic study, title compounds (4 a-i) showed significantly lower toxicity toward healthy cells (HUVEC) in comparison with the reference drug doxorubicin. The compounds with the lowest IC50 values on PC3 cell lines were 4 b (7.785 μM), 4 c (8.869 μM), and 4 e (8.765 μM). The results of the ADME calculations showed that the drug-likeness parameters were within the defined ranges according to Lipinski's and Jorgensen's rules. For the most potent compounds 4 b, 4 c, and 4 e, a molecular docking analysis using the induced fit docking (IFD) protocol was performed against three protein targets (PARP, PI3K, and mTOR). Based on the IFD scores, compound 4 b had the highest calculated affinity for PARP1, while compound 4 c had higher affinities for mTOR and PI3K. The MM-GBSA calculations showed that the most potent compounds had high binding affinities and formed stable complexes with the protein targets. Finally, a 50 ns molecular dynamics simulation was performed to study the behavior of protein target complexes under in silico physiological conditions.
Collapse
Affiliation(s)
- Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Fatih, Istanbul, Türkiye
| | - Mansour Ghaffari-Moghaddam
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Fatih, Istanbul, Türkiye
- University of Zabol, Faculty of Science, Department of Chemistry, Zabol, 98615-538, Iran
| | - Şeyma Bulut
- Bezmialem Vakif University, Institute of Health Sciences, Department of Biotechnology, 34093 Fatih, Istanbul, Türkiye
- Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, 34093 Fatih, Istanbul, Türkiye
| | - Fahri Akbaş
- Bezmialem Vakif University, Faculty of Medicine, Department of Medical Biology, 34093 Fatih, Istanbul, Türkiye
| | - Aytekin Köse
- Aksaray University, Faculty of Science and Letters, Department of Chemistry, 68100, Aksaray, Türkiye
| | - Gülaçtı Topçu
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacognosy & Phytochemistry Chemistry, 34093 Fatih, Istanbul, Türkiye
| |
Collapse
|