1
|
De Souza TPP, Cantão LXS, Rodrigues MQRB, Gonçalves DB, Nagem RAP, Rocha REO, Godoi RR, Lima WJN, Galdino AS, Minardi RCDM, Lima LHFD. Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase in different pHs - a computational study. J Biomol Struct Dyn 2024; 42:5030-5041. [PMID: 37325852 DOI: 10.1080/07391102.2023.2223685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thaís P P De Souza
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Letícia Xavier Silva Cantão
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Bonoto Gonçalves
- Department of Biosystems Engineering, Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Eduardo Oliveira Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| | - Renato Ramos Godoi
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - William James Nogueira Lima
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Campus Regional de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Raquel Cardoso de Melo Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Henrique França de Lima
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| |
Collapse
|
2
|
Son BS, Kim SH, Sagong HY, Lee SR, Choi EJ. Improved Thermal Stability of a Novel Acidophilic Phytase. J Microbiol Biotechnol 2024; 34:1119-1125. [PMID: 38563103 PMCID: PMC11180912 DOI: 10.4014/jmb.2311.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70°C. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60°C. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80°C heat treatment without significant loss of or with increased activity.
Collapse
Affiliation(s)
- Byung Sam Son
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - So Hyeong Kim
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Hye-Young Sagong
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Su Rin Lee
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Eun Jung Choi
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| |
Collapse
|
3
|
Scott BM, Koh K, Rix GD. Structural and functional profile of phytases across the domains of life. Curr Res Struct Biol 2024; 7:100139. [PMID: 38562944 PMCID: PMC10982552 DOI: 10.1016/j.crstbi.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin M. Scott
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Kevin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Gregory D. Rix
- Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| |
Collapse
|
4
|
Singh B, Pragya, Tiwari SK, Singh D, Kumar S, Malik V. Production of fungal phytases in solid state fermentation and potential biotechnological applications. World J Microbiol Biotechnol 2023; 40:22. [PMID: 38008864 DOI: 10.1007/s11274-023-03783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 11/28/2023]
Abstract
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, 123029, Haryana, India
| | - Sandeep Kumar
- Department of Biotechnology, Shobhit Institute of Engineering and Technology (Deemed to Be University), Modipurum, Meerut, 250110, UP, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
5
|
Maulana H, Widyastuti Y, Herlina N, Hasbuna A, Al-Islahi ASH, Triratna L, Mayasari N. Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed. J Genet Eng Biotechnol 2023; 21:142. [PMID: 38008870 PMCID: PMC10678861 DOI: 10.1186/s43141-023-00600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Phytase supplementation in rations can reduce their phytic acid composition in order to enhance their nutritional value. Aspergillus niger is a fungus that can encode phytase. This study aims to determine the characteristics of its DNA sequences and amino acid composition that encode the phytase enzyme, as well as to determine the primer designs. METHOD This study used gene sequence data and protein-encoding phytase from Aspergillus niger that was collected manually from NCBI and PDB. The data was analyzed using SPDBV and then be aligned using the ClustalW Multiple Alignment features. The phylogenetic tree was built by Mega11 software. Primers were designed from selected candidate sequences that were analyzed. The designed primers were then simulated for PCR using FastPCR and SnapGene software. RESULTS There are 18 Aspergillus niger phytases in NCBI which is 14.87% of the total Aspergillus. There are 14 Aspergillus niger phytases that have identity above 95%. Aspergillus niger 110. M94550.1 is the closest strain to the PDB template. Candidate sources of phytase genes are Aspergillus niger 110.M94550.1, 48.2.BCMY01000003.1, and 92.JQ654450.1. The primer design has 2 possibilities of self-annealing and high melting temperature on the reverse primer. PCR simulation shows that the primer design can attach completely but still has the possibility of mispriming. CONCLUSION This study suggests promising results for the future development of phytase enzyme production from Aspergillus niger as a feed additive using genetic engineering to enhance the quality of livestock feed in Indonesia.
Collapse
Affiliation(s)
- Hamdan Maulana
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia
| | - Yantyati Widyastuti
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Nina Herlina
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Abun Hasbuna
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia
| | | | - Lita Triratna
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Novi Mayasari
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia.
| |
Collapse
|
6
|
Xing H, Wang P, Yan X, Yang Y, Li X, Liu R, Zhou Z. Thermostability enhancement of Escherichia coli phytase by error-prone polymerase chain reaction (epPCR) and site-directed mutagenesis. Front Bioeng Biotechnol 2023; 11:1167530. [PMID: 37064242 PMCID: PMC10101328 DOI: 10.3389/fbioe.2023.1167530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Phytase efficiently hydrolyzes phytate to phosphate; thus, it is widely used to increase phosphorus availability in animal feeds and reduce phosphorus pollution through excretion. Phytase is easily inactivated during feed pelleting at high temperature, and sufficient thermostability of phytase is essential for industrial applications. In this study, directed evolution was performed to enhance phytase thermostability. Variants were initially expressed in Escherichia coli BL21 for screening, then in Pichia pastoris for characterization. Over 19,000 clones were generated from an error-prone Polymerase Chain Reaction (epPCR) library; 5 mutants (G10, D7, E3, F8, and F9) were obtained with approximately 9.6%, 10.6%, 11.5%, 11.6%, and 12.2% higher residual activities than the parent after treatment at 99°C for 60 min. Three of these mutants, D7, E3, and F8, exhibited 79.8%, 73.2%, and 92.6% increases in catalytic efficiency (kcat/Km), respectively. In addition, the specific activities of D7, E3, and F8 were 2.33-, 1.98-, and 2.02-fold higher than parental phytase; they were also higher than the activities of all known thermostable phytases. Sequence analysis revealed that all mutants were substituted at residue 75 and was confirmed that the substitution of cysteine at position 75 was the main contribution to the improvement of thermostability of mutants by saturation mutagenesis, indicating that this amino acid is crucial for the stability and catalytic efficiency of phytase. Docking structure analysis revealed that substitution of the C75 residue allowed the mutants to form additional hydrogen bonds in the active pocket, thereby facilitating binding to the substrate. In addition, we confirmed that the intrinsic C77-C108 disulfide bond in E. coli phytase is detrimental to its stability.
Collapse
Affiliation(s)
- Hongguan Xing
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinliang Li
- CJ Youtell (Shanghai) Biotech Co., Ltd., Shanghai, China
| | - Rui Liu
- CJ Youtell (Shanghai) Biotech Co., Ltd., Shanghai, China
| | - Zhihua Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhihua Zhou,
| |
Collapse
|
7
|
Gordeeva TL, Borshchevskaya LN, Sineoky SP. Biochemical characterisation of glycosylated and deglycosylated forms of phytase from Cronobacter turicensis expressed in Pichia pastoris. Enzyme Microb Technol 2023; 162:110136. [DOI: 10.1016/j.enzmictec.2022.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
|
8
|
Gulizia J, Rueda M, Ovi F, Bonilla S, Prasad R, Jackson M, Gutierrez O, Pacheco W. Evaluate the effect of a commercial heat stable phytase on broiler performance, tibia ash, and mineral excretion from 1 to 49 days of age assessed using nutrient reduced diets. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Yang LL, Shi HL, Liu F, Wang Z, Chen KL, Chen WS, Niu XR, Kan YC, Yao LG, Tang CD. Gene cloning of a highly active phytase from Lactobacillus plantarum and further improving its catalytic activity and thermostability through protein engineering. Enzyme Microb Technol 2022; 156:109997. [DOI: 10.1016/j.enzmictec.2022.109997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
|
10
|
Madsen CK, Brinch-Pedersen H. Globoids and Phytase: The Mineral Storage and Release System in Seeds. Int J Mol Sci 2020; 21:ijms21207519. [PMID: 33053867 PMCID: PMC7589363 DOI: 10.3390/ijms21207519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
Phytate and phytases in seeds are the subjects of numerous studies, dating back as far as the early 20th century. Most of these studies concern the anti-nutritional properties of phytate, and the prospect of alleviating the effects of phytate with phytase. As reasonable as this may be, it has led to a fragmentation of knowledge, which hampers the appreciation of the physiological system at hand. In this review, we integrate the existing knowledge on the chemistry and biosynthesis of phytate, the globoid cellular structure, and recent advances on plant phytases. We highlight that these components make up a system that serves to store and-in due time-release the seed's reserves of the mineral nutrients phosphorous, potassium, magnesium, and others, as well as inositol and protein. The central component of the system, the phytate anion, is inherently rich in phosphorous and inositol. The chemical properties of phytate enable it to sequester additional cationic nutrients. Compartmentalization and membrane transport processes regulate the buildup of phytate and its associated nutrients, resulting in globoid storage structures. We suggest, based on the current evidence, that the degradation of the globoid and the mobilization of the nutrients also depend on membrane transport processes, as well as the enzymatic action of phytase.
Collapse
|
11
|
Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. Enzyme Microb Technol 2020; 142:109679. [PMID: 33220867 DOI: 10.1016/j.enzmictec.2020.109679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 01/21/2023]
Abstract
Phytases are important industrial enzymes widely used as feed additives to hydrolyze phytate and release inorganic phosphate. In this study, a phytase gene PhyBL isolated from Bacillus licheniformis WHU was cloned and expressed in Escherichia coli. PhyBL showed the highest activity at pH 7.0 and retained more than 40 % of its activity at a wide temperature range from 35 to 65 °C. Ca2+ significantly affected the stability and activity of the enzyme. We further improved the stability of PhyBL through extensively disulfide engineering. After constructing and screening a series of variants, an enhanced stable G197C/A358C variant was obtained. The G197C/A358C variant had a half-life at 60℃ roughly 3.8-fold longer than the wild type. In addition, the G197C/A358C variant also showed enhanced proteolytic resistance to pepsin and trypsin. The potential mechanism underlying these improvements was investigated by molecular dynamics analysis. Our results suggest that the G197C/A358C variant may have potential application as an additive enzyme in aquaculture feed.
Collapse
|
12
|
Gordeeva TL, Borshchevskaya LN, Kalinina AN, Sineoky SP, Kashirskaya MD, Voronin SP. Increase in the Thermal Stability of Phytase from Citrobacter freundii by Site-Directed Saturation Mutagenesis. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819080052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jang WJ, Lee JM, Tawheed Hasan M, Kong IS. Fusion of the N-terminal domain of Pseudomonas sp. phytase with Bacillus sp. phytase and its effects on optimal temperature and catalytic efficiency. Enzyme Microb Technol 2019; 126:69-76. [DOI: 10.1016/j.enzmictec.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/07/2023]
|
14
|
Herrmann KR, Ruff AJ, Infanzón B, Schwaneberg U. Engineered phytases for emerging biotechnological applications beyond animal feeding. Appl Microbiol Biotechnol 2019; 103:6435-6448. [DOI: 10.1007/s00253-019-09962-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
|
15
|
EL ENSHASY H, DAİLİN DJ, ABD MANAS NH, WAN AZLEE Nİ, EYAHMALAY ,J, YAHAYA ,SA, ABD MALEK R, SİWAPİRAGAM V, SUKMAWATİ D. Current and Future Applications of Phytases in Poultry Industry: A Critical Review. JOURNAL OF ADVANCES IN VETBIO SCIENCE AND TECHNIQUES 2018; 3:65-74. [DOI: 10.31797/vetbio.455687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Phytases
are enzymes that initiate the removal of phosphate from phytate. This enzyme
has been widely utilized in animal feeding especially in the poultry industry
to enhance phosphorus intake and minimize environmental pollution. Phytases are
widely distributed in microbial, plants and animals. Supplementations of
phytase into the diets of poultry have great impact to the improvement of
poultry immune systems and increase bird weight. In addition to that, phytase
are able to improve both quantity and quality of eggs, egg mass and egg shell
quality. This review covers the classifications and distribution of phytases in
different biofactoris. In addition, it shed more light on the recent trends of
application and beneficial impact in poultry farming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dalia SUKMAWATİ
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta
| |
Collapse
|
16
|
Jang WJ, Lee JM, Park HD, Choi YB, Kong IS. N-terminal domain of the beta-propeller phytase of Pseudomonas sp. FB15 plays a role for retention of low-temperature activity and catalytic efficiency. Enzyme Microb Technol 2018; 117:84-90. [DOI: 10.1016/j.enzmictec.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/17/2018] [Indexed: 11/28/2022]
|
17
|
Han N, Miao H, Yu T, Xu B, Yang Y, Wu Q, Zhang R, Huang Z. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation. BMC Biotechnol 2018; 18:36. [PMID: 29859065 PMCID: PMC5984770 DOI: 10.1186/s12896-018-0445-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Phytase supplied in feeds for monogastric animals is important for improving nutrient uptake and reducing phosphorous pollution. High-thermostability phytases are particularly desirable due to their ability to withstand transient high temperatures during feed pelleting procedures. A comparison of crystal structures of the widely used industrial Aspergillus niger PhyA phytase (AnP) with its close homolog, the thermostable Aspergillus fumigatus phytase (AfP), suggests 18 residues in three segments associated with thermostability. In this work, we aim to improve the thermostability of AnP through site-directed mutagenesis. We identified favorable mutations based on structural comparison of homologous phytases and molecular dynamics simulations. Results A recombinant phytase (AnP-M1) was created by substituting 18 residues in AnP with their AfP analogs. AnP-M1 exhibited greater thermostability than AnP at 70 °C. Molecular dynamics simulations suggested newly formed hydrogen bonding interactions with nine substituted residues give rise to the improved themostability. Thus, another recombinant phytase (AnP-M2) with just these nine point substitutions was created. AnP-M2 demonstrated superior thermostability among all AnPs at ≥70 °C: AnP-M2 maintained 56% of the maximal activity after incubation at 80 °C for 1 h; AnP-M2 retained 30-percentage points greater residual activity than that of AnP and AnP-M1 after 1 h incubation at 90 °C. Conclusions The resulting AnP-M2 is an attractive candidate in industrial applications, and the nine substitutions in AnP-M2 are advantageous for phytase thermostability. This work demonstrates that a strategy combining structural comparison of homologous enzymes and computational simulation to focus on important interactions is an effective method for obtaining a thermostable enzyme. Electronic supplementary material The online version of this article (10.1186/s12896-018-0445-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Huabiao Miao
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Tingting Yu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Bo Xu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Yunjuan Yang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Rui Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, 650500, China. .,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, China.
| |
Collapse
|
18
|
Microbial degradation of myo-inositol hexakisphosphate (IP6): specificity, kinetics, and simulation. 3 Biotech 2018; 8:268. [PMID: 29868306 DOI: 10.1007/s13205-018-1302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Microbial degradation of myo-inositol hexakisphosphate (IP6) is crucial to deal with nutritional problems in monogastric animals as well as to prevent environmental phosphate pollution. The present study deals with the degradation of IP6 by microorganisms such as Sporosarcina spp. pasteurii, globiospora, psychrophila, Streptococcus thermophilus and Saccharomyces boulardii. These microbes were screened for phytase production under laboratory conditions. The specificity of the enzyme was tested for various phosphorylated substrates such as sodium phytate (IP6), sodium hexametaphosphate, phenyl phosphate, α-d-glucose-6 phosphate, inosine 5' monophosphate and pyridoxal 5' phosphate. These enzymes were highly specific to IP6. The influence of modulators such as phytochemicals and metal ions on the enzymatic activity was assessed. These modulators in different concentrations had varying effect on microbial phytases. Calcium (in optimal concentration of 0.5 M) played an important role in enzyme activation. The enzymes were then characterized based on their molecular weight 41~43 kDa. The phytase-producing microbes were assessed for IP6 degradation in a simulated intestinal setup. Among the selected microbes, Sporosarcina globiospora hydrolyzed IP6 effectively, as confirmed by colorimetric time-based analysis.
Collapse
|
19
|
Farias N, Almeida I, Meneses C. New Bacterial Phytase through Metagenomic Prospection. Molecules 2018; 23:E448. [PMID: 29462992 PMCID: PMC6017413 DOI: 10.3390/molecules23020448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022] Open
Abstract
Alkaline phytases from uncultured microorganisms, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives in agricultural industry. The development of metagenomics has stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. In this study, a gene encoding a phytase was cloned from red rice crop residues and castor bean cake using a metagenomics strategy. The amino acid identity between this gene and its closest published counterparts is lower than 60%. The phytase was named PhyRC001 and was biochemically characterized. This recombinant protein showed activity on sodium phytate, indicating that PhyRC001 is a hydrolase enzyme. The enzymatic activity was optimal at a pH of 7.0 and at a temperature of 35 °C. β-propeller phytases possess great potential as feed additives because they are the only type of phytase with high activity at neutral pH. Therefore, to explore and exploit the underlying mechanism for β-propeller phytase functions could be of great benefit to biotechnology.
Collapse
Affiliation(s)
- Nathálya Farias
- Graduate Program in Agricultural Sciences, Universidade Estadual da Paraíba (UEPB), Campina Grande/PB 58429-500, Brazil.
| | - Isabela Almeida
- Department of Biology, Universidade Estadual da Paraíba (UEPB).
| | - Carlos Meneses
- Department of Biology and Graduate Program in Agricultural Sciences, Universidade Estadual da Paraíba (UEPB), Campina Grande/PB 58429-500, Brazil.
| |
Collapse
|
20
|
Greiner R. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9603-9607. [PMID: 29052415 DOI: 10.1021/acs.jafc.7b03897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.
Collapse
Affiliation(s)
- Ralf Greiner
- Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| |
Collapse
|