Riu MLY, Bistoni G, Cummins CC. Understanding the Nature and Properties of Hydrogen-Hydrogen Bonds: The Stability of a Bulky Phosphatetrahedrane as a Case Study.
J Phys Chem A 2021;
125:6151-6157. [PMID:
34236879 DOI:
10.1021/acs.jpca.1c04046]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, the first mixed C/P phosphatetrahedranes (tBuC)3P and (tBuCP)2 were reported. Unlike (tBuCP)2, (tBuC)3P exhibits remarkable thermal stability, which can be partially attributed to a network of nine hydrogen-hydrogen bonds (HHBs) localized between the tert-butyl substituents. The stabilizing contribution arising from this network of HHBs was obtained from local energy decomposition (LED) analysis calculated at the domain-based local pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory. These calculations suggest that each HHB contributes approximately -0.7 kcal/mol of stabilization; however, the net stabilization energy likely lies between -0.25 and -0.5 kcal/mol because of steric repulsion. Spatial analysis of the London dispersion energy via a dispersion interaction density (DID) plot reveals that the DID surface is localized at key C-H groups involved in HHBs, consistent with London dispersion interactions predominantly arising from HHBs. In addition, we present a computed mechanism that supports a phosphinidenoid species as a key reaction intermediate in the synthesis of (tBuC)3P.
Collapse