Morgenstern O, Wanka H, Röser I, Steveling A, Kuttler B. Synthesis, structural investigations and biological evaluation of novel hexahydropyridazine-1-carboximidamides, -carbothioamides and -carbothioimidic acid esters as inducible nitric oxide synthase inhibitors.
Bioorg Med Chem 2004;
12:1071-89. [PMID:
14980620 DOI:
10.1016/j.bmc.2003.12.007]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 12/09/2003] [Indexed: 11/15/2022]
Abstract
Local excess of nitric oxide (NO) has been implicated in beta-cell damage, thus, a possible approach to the treatment of autoimmune IDDM is the selective inhibition of inducible nitric oxide synthase (iNOS). A series of variously substituted hexahydropyridazine-1-carbothioamides, -carbothioimidic acid esters and -carboximidamides was synthesized and dose-dependently evaluated as potential inhibitors of iNOS. The screening of the title compounds was performed with insulin-producing RIN-5AH cells and a combination of IL1-1 beta and IFN-gamma as inducers of cellular NO production. The structure-activity analysis revealed that the variation of substituents in the position 1 of the hexahydropyridazine strongly influences the inhibitory activity to iNOS as well as being critical for RIN cell survival. Among the compounds tested, the hexahydropyridazine-1-carbothioamides showed particularly significant inhibitory effects. However, for an efficient iNOS inhibition substitution at the nitrogen of the 1-carbothioamide group is important. Thus, the introduction of aliphatic chains such as propyl or butyl and of cyclic moieties such as cyclohexyl, 3-methoxyphenyl, and 4-methoxyphenyl (IC(50): 0.5-2.1 mM), respectively, provided compounds with similar inhibitory activity to aminoguanidine (IC(50): 0.3 mM), a common standard substance used for the selective inhibition of iNOS. However, the 1-carboximidamides, which represent more structurally related semicyclic derivatives of aminoguanidine, caused only incomplete iNOS inhibition. The hexahydropyridazine-1-carbothioimidic acid esters caused dose- and substituent-dependent damage of RIN-5AH cells. The toxicity of the synthesized compounds increased markedly if aliphatic substituents at the exocyclic N atom(s) were replaced by variously substituted aromatic rings.
Collapse