1
|
Elkhidir Y, Lai R, Feng Z. The impact of photofunctionalized gold nanoparticles on osseointegration. Heliyon 2018; 4:e00662. [PMID: 30094359 PMCID: PMC6077240 DOI: 10.1016/j.heliyon.2018.e00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The aims of this study were to create a new surface topography using simulated body fluids (SBF) and Gold Nanoparticles (GNPs) and then to assess the influence of UV Photofunctionalization (PhF) on the osteogenic capacity of these surfaces. MATERIALS AND METHODS Titanium plates were divided into six groups All were acid etched with 67% Sulfuric acid, 4 were immersed in SBF and 2 of these were treated with 10 nm GNPs. Half of the TiO2 plates were photofunctionalized to be compared with the non-PhF ones. Rat's bone marrow stem cells were seeded into the plates and then CCK8 assay, cell viability assay, immunofluorescence, and Scanning electron microscopy (SEM) were done after 24 hours. Gene expression analysis was done using real time quantitative PCR (qPCR) one week later to check for the mRNA expression of Collagen-1, Osteopontin and Osteocalcin. Alkaline phosphatase (ALP) activity was assessed after 2 weeks of cell seeding. RESULTS Our new topography has shown remarkable osteogenic potential. The new surface was the most biocompatible, and the 10 nm GNPs did not show any cytotoxicity. There was a significant increase in bioactivity, enhanced gene expressions and ALP activity. CONCLUSIONS GNPs enhances osteogenic differentiation of stem cells and Photofunctionalizing GNPs highly increases this. We have further created a novel highly efficient topography which highly enhances the speed and extent of osseointegration. This may have great potential for improving treatment outcomes for implant, maxillofacial as well as orthopedic patients.
Collapse
Affiliation(s)
| | | | - Zhiqiang Feng
- Implant Department – Suihua, The First Affiliated Stomatological Hospital of Jinan University, PR China
| |
Collapse
|
2
|
Ding D, Xie Y, Li K, Huang L, Zheng X. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells. MATERIALS 2018; 11:ma11040546. [PMID: 29614022 PMCID: PMC5951430 DOI: 10.3390/ma11040546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.
Collapse
Affiliation(s)
- Ding Ding
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
3
|
Abstract
PURPOSE The aim of this study was to investigate the earlier phase of the osseointegration of a laser-treated implant surface in terms of human protein adsorption. MATERIALS AND METHODS Titanium surfaces were divided into machined (M), sandblasted (SB), and laser-treated (LT). The LT surfaces were created with an Nd diode-pumped laser in Q-switching, whereas the SB were treated with Al2O3. An x-ray photoelectron spectroscopy (XPS) analysis of titanium surface was performed. Titanium discs were used for albumin and fibronectin adsorption evaluation through fluorescence intensity. Fibronectin evaluation was also made with Western Blot analysis on experimental implants. RESULTS LT discs appeared to trigger a higher albumin and fibronectin adsorption with a regular pattern. The mean count of albumin adsorption was 0.29 and 3.8 for SB and LT, respectively (P = 0.016), whereas fibronectin values were 0.67 and 4.9 for (SB) and (LT) titanium (P = 0.02). XPS analysis showed that titanium, oxygen, carbon, and nitrogen were found on all 3 surfaces. CONCLUSION Laser-engineered porous titanium surface seems to promote, in vitro, the adsorption of albumin and fibronectin more than sandblasted (SB) or machined (M) implants.
Collapse
|
4
|
Comparative studies on the heterogeneity of plasma-derived and recombinant human albumins in laboratory use. Int J Biol Macromol 2014; 69:79-87. [DOI: 10.1016/j.ijbiomac.2014.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
|
5
|
Abstract
Despite the substantial contribution of titanium implants in the field of dental and orthopedic reconstructive therapy, there is a crucial unaddressed question of why bone-implant contact does not reach the ideal 100%. This review article introduces the recently reported time-dependent reduction in osteoconductivity and other biological capabilities of titanium since processing. This phenomenon is defined as the biological aging of titanium and provides insight to significantly advance the understanding of osseointegration and to further improve implant surfaces in the future.
Collapse
|
6
|
Wang N, Li H, Wang J, Chen S, Ma Y, Zhang Z. Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4516-4523. [PMID: 22894817 DOI: 10.1021/am300727v] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With its excellent anticorrosion and biocompatibility, tantalum, as a promising endosseous implant or implant coating, is attracting more and more attention. For improving physicochemical property and biocompatibility, the research of tantalum surface modification has increased. Tantalum oxide (Ta(2)O(5)) nanotube films can be produced on tantalum by controlling the conditions of anodization and annealing. The objective of our present study was to investigate the influence of Ta(2)O(5) nanotube films on pure tantalum properties related with anticorrosion, protein adsorption, and biological function of rabbit bone mesenchymal stem cells (rBMSCs). The polarization curve was measured, the adsorption of bovine serum albumin and fibronectin to Ta(2)O(5) nanotubes was detected, and the morphology and actin cytoskeletons of the rBMSCs were observed via fluorescence microscopy, and the adhesion and proliferation of the rBMSCs, as well as the osteogenic differentiation potential on tantalum specimens, were examined quantificationally by MTT and real-time PCR technology. The results showed that Ta(2)O(5) nanotube films have high anticorrosion capability and can increase the protein adsorption to tantalum and promote the adhesion, proliferation, and differentiation of rBMSCs, as well as the mRNA expression of osteogenic gene such as Osterix, ALP, Collagen-I, and Osteocalcin on tantalum. This study suggests that Ta(2)O(5) nanotube films can improve the anticorrosion, biocompatibility, and osteoinduction of pure tantalum, which provides the theoretical elaboration for development of tantalum endosseous implant or implant coating to a certain extent.
Collapse
Affiliation(s)
- Na Wang
- Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|
7
|
Kohavi D, Badihi Hauslich L, Rosen G, Steinberg D, Sela MN. Wettability versus electrostatic forces in fibronectin and albumin adsorption to titanium surfaces. Clin Oral Implants Res 2012; 24:1002-8. [PMID: 22697368 DOI: 10.1111/j.1600-0501.2012.02508.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Although the enhancement of plasma protein adsorption to titanium ( Ti ) following wetting has been recognized, the relationship between wettability and electrostatic forces has remained unclear. Thus, we have carried out a series of studies to determine the role of wettability and electrostatic forces on protein adsorption. METHODS Titanium disks with different surfaces were wetted with a range of solutions, two of which contained divalent positive ions ( Ca and Mg ). Unwetted disks served as a control. Subsequently, the wetted disks were subjected to three treatment regimes: (1) incubation in human serum albumin (HSA) or human serum fibronectin (HSF); (2) drying the wetted disks, followed by incubation in HSA or HSF; and (3) following protein adsorption, the Ca originating in the wetting solutions was removed by divalent positive ions chelator treatment (EGTA), and the remaining quantities were assessed. The quantity of the adsorbed proteins was determined by ELISA. RESULTS It was found that in the case of HSA, adsorption was enhanced by the wettability, the presence of Ca and Mg in the wetting solution, and the existence of rough surfaces. For HSF, the wettability and rough surfaces enhanced adsorption. CONCLUSION The results demonstrate that in addition to wettability, the composition of the wetting solution affects the protein adsorption. While wetting reduces the time for the HSA and HSF adsorption to reach saturation, the electrostatic forces enhance the amount of HSA adsorption. Thus, the protein adsorption capacity of titanium rough surfaces can be selectively manipulated by changing of the wetting solution.
Collapse
Affiliation(s)
- David Kohavi
- Oral Implant Center, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
8
|
Hori N, Iwasa F, Tsukimura N, Sugita Y, Ueno T, Kojima N, Ogawa T. Effects of UV photofunctionalization on the nanotopography enhanced initial bioactivity of titanium. Acta Biomater 2011; 7:3679-91. [PMID: 21723964 DOI: 10.1016/j.actbio.2011.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/13/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
This study addresses the control of the biological capabilities of titanium through specific nanosurface features and its potential modulation by UV photofunctionalization. Rat bone marrow derived osteoblasts were cultured on titanium disks with micropits alone, micropits with 100 nm nodules, micropits with 300 nm nodules, or micropits with 500 nm nodules, with or without UV treatment. After a 24 h incubation protein adsorption, as well as the attachment, retention, and spread of osteoblasts were examined in correlation with the topographical parameters of the titanium substrates. Each of the biological events was governed by a different set of multiple surface topographical factors with a distinctive pattern of regulation. For instance, without UV treatment the protein adsorption and cell attachment capability of titanium substrates increased linearly with increasing average roughness (Ra) and surface area of titanium disks, but increased polynomially with increasing nanonodule diameter. The cell retention capability increased polynomially with increasing nanonodular diameter and Ra, but increased linearly with increasing surface area. Consequently, the micropits with 300 nm nodules created the most favorable environment for this initial osteoblast behavior and response. UV treatment of the nanonodular titanium surfaces resulted in considerable enhancement of all biological events. However, the pattern of UV-mediated enhancement was disproportionate; exponential and overriding effects were observed depending upon the biological event and topographical parameter. As an example of overriding enhancement, the cell retention capability, which fluctuated with changes in various topographical parameters, became invariably high after UV treatment. The present data provide a basis for understanding how to optimize nanostructures to create titanium surfaces with increased biological capabilities and uncover a novel advantage of UV photofunctionalization of titanium substrates that synergistically increases its nanotopography enhanced biological capabilities whereby most of the initial biological events of osteoblasts were overwhelmingly enhanced beyond a simple proportional increase.
Collapse
|
9
|
Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater 2010; 6:4175-80. [PMID: 20466081 DOI: 10.1016/j.actbio.2010.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/22/2010] [Accepted: 05/06/2010] [Indexed: 11/23/2022]
Abstract
Ultraviolet (UV)-photofunctionalization of titanium to enable the establishment of a nearly complete bone-implant contact was reported recently. However, the underlying mechanism for this is unknown. We hypothesized that UV-treated titanium surfaces acquire distinct electrostatic properties that may play important roles in determining the bioactivity of these surfaces. The objective of this study was to determine the protein adsorption capability of UV-treated titanium surfaces under various electrostatic environments. The amount of albumin adsorbed on UV-treated and untreated titanium disks was evaluated under different pH conditions above and below the isoelectric points of albumin and titanium. The effects of additional treatment with various ionic solutions were also examined. Albumin adsorption on UV-treated surfaces at pH 7.0 was considerably greater (6-fold after 3h of incubation and 2.5-fold after 24h) than that to UV-untreated surfaces. UV-enhanced albumin adsorption was abrogated at pH 3.0 or when these titanium surfaces were treated with anions, while maintaining UV-induced superhydrophilicity. Albumin adsorption on UV-untreated titanium surfaces increased after treating these surfaces with divalent cations but not after treating them with monovalent cations. These results indicated that UV-treated titanium surfaces are electropositively charged as opposed to electronegatively charged UV-untreated titanium surfaces. This distinct UV-induced electrostatic property predominantly regulates the protein adsorption capability of titanium, superseding the effect of hydrophilic status, and converts titanium surfaces from bioinert to bioactive. As a result, direct titanium-protein interactions take place exclusively on UV-treated titanium surfaces without the aid of bridging ions.
Collapse
|
10
|
Hori N, Att W, Ueno T, Sato N, Yamada M, Saruwatari L, Suzuki T, Ogawa T. Age-dependent degradation of the protein adsorption capacity of titanium. J Dent Res 2009; 88:663-7. [PMID: 19641155 DOI: 10.1177/0022034509339567] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reported bone-implant contact percentages are far below the ideal 100%. We tested a hypothesis that the protein adsorption capability of titanium, which is critical to the process of osseointegration, changes over time before its use. Machined, acid-etched, and sandblasted surfaces were prepared and stored under dark ambient conditions for 3 days, 1 week, or 4 weeks. For all surfaces, protein adsorption decreased as the storage time increased, and their decreasing rates were dependent on titanium topography. After 4 weeks, the amounts of albumin and fibronectin adsorbed by the acid-etched surface were only 20% and 35%, respectively, of that adsorbed by the fresh surface after 2 hours of incubation, and remained substantially low even after 24 hours. This time-dependent degradation in protein adsorption of titanium correlated with its naturally decreasing hydrophilicity, which was not observed for the nickel and chromium surfaces, indicating a titanium-specific biological aging.
Collapse
Affiliation(s)
- N Hori
- Laboratory for Bone and Implant Sciences, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hossain MS, Hyeong LJ, Miah AG, Tsujii H. Effect of fatty acids bound to bovine serum albumin-V on acrosome reaction and utilization of glucose in boar spermatozoa. Reprod Med Biol 2007; 6:109-115. [PMID: 29662406 PMCID: PMC5891787 DOI: 10.1111/j.1447-0578.2007.00173.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim: The present study has been designed with the objective of determining if fatty acids bound to bovine serum albumin-V (BSA-V) can improve motility, viability, and increase acrosome reaction (AR) and utilization of glucose in boar spermatozoa. Methods: Boar spermatozoa were washed, swum-up and incubated at 37°C for 6 h in TALP medium supplemented with fatty acids bound to bovine serum albumin fraction V (BSA-V), fatty acid free BSA (BSA-FAF), polyvinyl alcohol + main fatty acids bound to BSA-V (PVA + FA) and PVA. Sperm motility, viability, AR, and the incorporation and oxidation of 14C-glucose were evaluated during 6 h of incubation. Results: The results show that the BSA-V was superior to BSA-FAF and PVA in improving motility and AR. Viability was significantly increased (P < 0.05) by only BSA-V compared with PVA. When the main fatty acids compound of BSA-V were added to PVA, the sperm motility, viability and AR became almost the same as with BSA-V. The rate of incorporation and oxidation of 14C-glucose were significantly increased (P < 0.05) by BSA-V compared with BSA-FAF and PVA. Fatty acids bound to BSA-V are important for improvement of sperm functions. Conclusions: The present study postulates that fatty acids bound to BSA-V are important to acrosome reaction and the utilization of glucose in boar spermatozoa.
Collapse
Affiliation(s)
- Md Sharoare Hossain
- Laboratory of Animal Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Lee Jun Hyeong
- Laboratory of Animal Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Abdul Gaffar Miah
- Laboratory of Animal Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Hirotada Tsujii
- Laboratory of Animal Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|