1
|
Coussement L, Oosterhof MM, Guryev V, Reitsema VA, Bruintjes JJ, Goris M, Bouma HR, de Meyer T, Rots MG, Henning RH. Liver transcriptomic and methylomic analyses identify transcriptional mitogen-activated protein kinase regulation in facultative hibernation of Syrian hamster. Proc Biol Sci 2023; 290:20230368. [PMID: 37221849 PMCID: PMC10206468 DOI: 10.1098/rspb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Hibernation consists of alternating torpor-arousal phases, during which animals cope with repetitive hypothermia and ischaemia-reperfusion. Due to limited transcriptomic and methylomic information for facultative hibernators, we here conducted RNA and whole-genome bisulfide sequencing in liver of hibernating Syrian hamster (Mesocricetus auratus). Gene ontology analysis was performed on 844 differentially expressed genes and confirmed the shift in metabolic fuel utilization, inhibition of RNA transcription and cell cycle regulation as found in seasonal hibernators. Additionally, we showed a so far unreported suppression of mitogen-activated protein kinase (MAPK) and protein phosphatase 1 pathways during torpor. Notably, hibernating hamsters showed upregulation of MAPK inhibitors (dual-specificity phosphatases and sproutys) and reduced levels of MAPK-induced transcription factors (TFs). Promoter methylation was found to modulate the expression of genes targeted by these TFs. In conclusion, we document gene regulation between hibernation phases, which may aid the identification of pathways and targets to prevent organ damage in transplantation or ischaemia-reperfusion.
Collapse
Affiliation(s)
- Louis Coussement
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Marloes M. Oosterhof
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Vera A. Reitsema
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jojanneke J. Bruintjes
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Tim de Meyer
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
2
|
Falvo S, Santillo A, Di Fiore MM, Rosati L, Chieffi Baccari G. JNK/Elk1 signaling and PCNA protein expression in the brain of hibernating frog Pelophylax esculentus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:529-536. [PMID: 33970561 DOI: 10.1002/jez.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
3
|
Abstract
Ecological fitness is the ability of individuals in a population to survive and reproduce. Individuals with increased fitness are better equipped to withstand the selective pressures of their environments. This paradigm pertains to all organismal life as we know it; however, it is also becoming increasingly clear that within multicellular organisms exist highly complex, competitive, and cooperative populations of cells under many of the same ecological and evolutionary constraints as populations of individuals in nature. In this review I discuss the parallels between populations of cancer cells and populations of individuals in the wild, highlighting how individuals in either context are constrained by their environments to converge on a small number of critical phenotypes to ensure survival and future reproductive success. I argue that the hallmarks of cancer can be distilled into key phenotypes necessary for cancer cell fitness: survival and reproduction. I posit that for therapeutic strategies to be maximally beneficial, they should seek to subvert these ecologically driven phenotypic responses.
Collapse
|
4
|
Tessier SN, Breedon SA, Storey KB. Modulating Nrf2 transcription factor activity: Revealing the regulatory mechanisms of antioxidant defenses during hibernation in 13-lined ground squirrels. Cell Biochem Funct 2021; 39:623-635. [PMID: 33624895 DOI: 10.1002/cbf.3627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
Mammalian hibernators undergo major behavioural, physiological and biochemical changes to survive hypothermia, ischaemia-reperfusion and finite fuel reserves during days or weeks of continuous torpor. During hibernation, the 13-lined ground squirrel (Ictidomys tridecemlineatus) undergoes a global suppression of energetically expensive processes such as transcription and translation, while selectively upregulating certain genes/proteins to mitigate torpor-related damage. Antioxidant defenses are critical for preventing damage caused by reactive oxygen species (ROS) during torpor and arousal, and Nrf2 is a critical regulator of these antioxidant genes. This study analysed the relative protein expression levels of Nrf2, KEAP1, small Mafs (MafF, MafK and MafG) and catalase and the regulation of Nrf2 transcription factors by post-translational modifications (PTMs) and protein-protein interactions with a negative regulator (KEAP1) during hibernation. It was found that a significant increase in MafK during late torpor predicated an increase in relative Nrf2 and catalase levels seen in arousal. Additionally, Nrf2-KEAP1 protein-protein interactions and Nrf2 PTMs, including serine phosphorylation and lysine acetylation, were responsive to cycles of torpor-arousal with peak responses occurring during arousal. These peaks seen during arousal correspond to a surge in oxygen consumption, which causes increased ROS production. Thus, these regulatory mechanisms could be important during hibernation because they provide mechanisms for mitigating the deleterious effects of oxidative stress by modifying Nrf2 expression and function in an energetically inexpensive manner.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine and Surgery, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sarah A Breedon
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Watts AJ, Logan SM, Kübber-Heiss A, Posautz A, Stalder G, Painer J, Gasch K, Giroud S, Storey KB. Regulation of Peroxisome Proliferator-Activated Receptor Pathway During Torpor in the Garden Dormouse, Eliomys quercinus. Front Physiol 2020; 11:615025. [PMID: 33408645 PMCID: PMC7779809 DOI: 10.3389/fphys.2020.615025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Differential levels of n-6 and n-3 essential polyunsaturated fatty acids (PUFAs) are incorporated into the hibernator’s diet in the fall season preceding prolonged, multi-days bouts of torpor, known as hibernation. Peroxisome proliferator-activated receptor (PPAR) transcriptional activators bind lipids and regulate genes involved in fatty acid transport, beta-oxidation, ketogenesis, and insulin sensitivity; essential processes for survival during torpor. Thus, the DNA-binding activity of PPARα, PPARδ, PPARγ, as well as the levels of PPARγ coactivator 1α (PGC-1α) and L-fatty acid binding protein (L-FABP) were investigated in the hibernating garden dormouse (Eliomys quercinus). We found that dormice were hibernating in a similar way regardless of the n-6/n-3 PUFA diets fed to the animals during the fattening phase prior to hibernation. Further, metabolic rates and body mass loss during hibernation did not differ between dietary groups, despite marked differences in fatty acid profiles observed in white adipose tissue prior and at mid-hibernation. Overall, maintenance of PPAR DNA-binding activity was observed during torpor, and across three n-6/n-3 ratios, suggesting alternate mechanisms for the prioritization of lipid catabolism during torpor. Additionally, while no change was seen in L-FABP, significantly altered levels of PGC-1α were observed within the white adipose tissue and likely contributes to enhanced lipid metabolism when the diet favors n-6 PUFAs, i.e., high n-6/n-3 ratio, in both the torpid and euthermic state. Altogether, the maintenance of lipid metabolism during torpor makes it likely that consistent activity or levels of the investigated proteins are in aid of this metabolic profile.
Collapse
Affiliation(s)
| | | | - Anna Kübber-Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Annika Posautz
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Gasch
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
6
|
Hadj-Moussa H, Zhang J, Pifferi F, Perret M, Storey KB. Profiling torpor-responsive microRNAs in muscles of the hibernating primate Microcebus murinus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194473. [DOI: 10.1016/j.bbagrm.2019.194473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
|
7
|
Wijenayake S, Luu BE, Zhang J, Tessier SN, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, Storey KB. Strategies of biochemical adaptation for hibernation in a South American marsupial Dromiciops gliroides: 1. Mitogen-activated protein kinases and the cell stress response. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:12-18. [DOI: 10.1016/j.cbpb.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
|
8
|
Currie SE. No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor. J Comp Physiol B 2018; 188:695-705. [PMID: 29623413 DOI: 10.1007/s00360-018-1158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 01/23/2023]
Abstract
Heterothermic animals regularly undergo profound alterations of cardiac function associated with torpor. These animals have specialised tissues capable of withstanding fluctuations in body temperature > 30 °C without adverse effects. In particular, the hearts of heterotherms are able to resist fibrillation and discontinuity of the cardiac conduction system common in homeotherms during hypothermia. To investigate the patterns of cardiac conduction in small insectivorous bats which enter torpor year round, I simultaneously measured ECG and subcutaneous temperature (Tsub) of 21 Nyctophilus gouldi (11 g) during torpor at a range of ambient temperatures (Ta 1-28 °C). During torpor cardiac conduction slowed in a temperature dependent manner, primarily via prolongation along the atrioventricular pathway (PR interval). A close coupling of depolarisation and repolarisation was retained in torpid bats, with no isoelectric ST segment visible until animals reached Tsub <6 °C. There was little change in ventricular repolarisation (JT interval) with decreasing Tsub, or between rest and torpor at mild Ta. Bats retained a more rapid rate of ventricular conduction and repolarisation during torpor relative to other hibernators. Throughout all recordings across seasons (> 2500 h), there was no difference in ECG morphology or heart rate during torpor, and no manifestations of significant conduction blocks or ventricular tachyarrhythmias were observed. My results demonstrate the capacity of bat hearts to withstand extreme fluctuations in rate and temperature throughout the year without detrimental arrhythmogenesis. I suggest that this conduction reserve may be related to flight and the daily extremes in metabolism experienced by these animals, and warrants further investigation of cardiac electrophysiology in other flying hibernators.
Collapse
Affiliation(s)
- Shannon E Currie
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, 2351, Australia. .,Department of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| |
Collapse
|
9
|
Hoyeck MP, Hadj-Moussa H, Storey KB. The role of MEF2 transcription factors in dehydration and anoxia survival in Rana sylvatica skeletal muscle. PeerJ 2017; 5:e4014. [PMID: 29134152 PMCID: PMC5682099 DOI: 10.7717/peerj.4014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
The wood frog (Rana sylvatica) can endure freezing of up to 65% of total body water during winter. When frozen, wood frogs enter a dormant state characterized by a cessation of vital functions (i.e., no heartbeat, blood circulation, breathing, brain activity, or movement). Wood frogs utilize various behavioural and biochemical adaptations to survive extreme freezing and component anoxia and dehydration stresses, including a global suppression of metabolic functions and gene expression. The stress-responsive myocyte enhancer factor-2 (MEF2) transcription factor family regulates the selective expression of genes involved in glucose transport, protein quality control, and phosphagen homeostasis. This study examined the role of MEF2A and MEF2C proteins as well as select downstream targets (glucose transporter-4, calreticulin, and muscle and brain creatine kinase isozymes) in 40% dehydration and 24 h anoxia exposure at the transcriptional, translational, and post-translational levels using qRT-PCR, immunoblotting, and subcellular localization. Mef2a/c transcript levels remained constant during dehydration and anoxia. Total, cytoplasmic, and nuclear MEF2A/C and phospho-MEF2A/C protein levels remained constant during dehydration, whereas a decrease in total MEF2C levels was observed during rehydration. Total and phospho-MEF2A levels remained constant during anoxia, whereas total MEF2C levels decreased during 24 h anoxia and P-MEF2C levels increased during 4 h anoxia. In contrast, cytoplasmic MEF2A levels and nuclear phospho-MEF2A/C levels were upregulated during anoxia. MEF2 downstream targets remained constant during dehydration and anoxia, with the exception of glut4 which was upregulated during anoxia. These results suggest that the upregulated MEF2 response reported in wood frogs during freezing may in part stem from their cellular responses to surviving prolonged anoxia, rather than dehydration, leading to an increase in GLUT4 expression which may have an important role during anoxia survival.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
10
|
Tessier SN, Zhang Y, Wijenayake S, Storey KB. MAP kinase signaling and Elk1 transcriptional activity in hibernating thirteen-lined ground squirrels. Biochim Biophys Acta Gen Subj 2017; 1861:2811-2821. [DOI: 10.1016/j.bbagen.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
11
|
Arfat Y, Chang H, Gao Y. Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators. J Cell Physiol 2017; 233:2695-2704. [PMID: 28574587 DOI: 10.1002/jcp.26034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival.
Collapse
Affiliation(s)
- Yasir Arfat
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| |
Collapse
|
12
|
Zhang J, Storey KB. Insect cold hardiness: the role of mitogen-activated protein kinase and Akt signalling in freeze avoiding larvae of the goldenrod gall moth, Epiblema scudderiana. INSECT MOLECULAR BIOLOGY 2017; 26:181-189. [PMID: 27880024 DOI: 10.1111/imb.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Larvae of the goldenrod gall moth, Epiblema scudderiana, use the freeze avoidance strategy of cold hardiness to survive the winter. Here we report that protein kinase-dependent signal transduction featuring mitogen-activated protein kinase (MAPK) signalling cascades (extracellular signal regulated kinase, c-jun N-terminal kinase and p38 MAPK pathways) and the Akt (also known as protein kinase B, or PKB) pathway could be integral parts of the development of cold hardiness by E. scudderiana. We used Luminex technology to assess the protein levels and phosphorylation status of key components and downstream targets of those pathways in larvae in response to low temperature acclimation. The data showed that MAPK pathways (both total protein and phosphorylated MAPK targets) were inhibited after 5°C acclimation, but not -15°C exposure, as compared with the 15°C control group. However, total heat shock protein 27 (HSP27) levels increased dramatically by ∼12-fold in the -15°C acclimated insects. Elevated HSP27 may facilitate anti-apoptotic mechanisms in an Akt-dependent fashion. By contrast, both 5 and -15°C acclimation produced signs of Akt pathway activation. In particular, the inhibitor phosphorylated Glycogen Synthase Kinase 3a (p-GSK3) levels remained high in cold-exposed larvae. Additionally, activation of the Akt pathway might also facilitate inhibition of apoptosis independently of GSK3. Overall, the current study indicates that both MAPK and Akt signal transduction may play essential roles in freeze avoidance by E. scudderiana.
Collapse
Affiliation(s)
- J Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - K B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
14
|
Regulation of Torpor in the Gray Mouse Lemur: Transcriptional and Translational Controls and Role of AMPK Signaling. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:103-10. [PMID: 26092186 PMCID: PMC4511784 DOI: 10.1016/j.gpb.2015.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/21/2015] [Indexed: 12/02/2022]
Abstract
The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerging significance to human health research, lemurs present an optimal model for exploring molecular adaptations that regulate primate hypometabolism. A fundamental challenge is how to effectively regulate energy expensive cellular processes (e.g., transcription and translation) during transitions to/from torpor without disrupting cellular homeostasis. One such regulatory mechanism is reversible posttranslational modification of selected protein targets that offers fine cellular control without the energetic burden. This study investigates the role of phosphorylation and/or acetylation in regulating key factors involved in energy homeostasis (AMP-activated protein kinase, or AMPK, signaling pathway), mRNA translation (eukaryotic initiation factor 2α or eIF2α, eukaryotic initiation factor 4E or eIF4E, and initiation factor 4E binding protein or 4EBP), and gene transcription (histone H3) in six tissues of torpid and aroused gray mouse lemurs. Our results indicated selective tissue-specific changes of these regulatory proteins. The relative level of Thr172-phosphorylated AMPKα was significantly elevated in the heart but reduced in brown adipose tissue during daily torpor, as compared to the aroused lemurs, implicating the regulation of AMPK activity during daily torpor in these tissues. Interestingly, the levels of the phosphorylated eIFs were largely unaltered between aroused and torpid animals. Phosphorylation and acetylation of histone H3 were examined as a marker for transcriptional regulation. Compared to the aroused lemurs, level of Ser10-phosphorylated histone H3 decreased significantly in white adipose tissue during torpor, suggesting global suppression of gene transcription. However, a significant increase in acetyl-histone H3 in the heart of torpid lemurs indicated a possible stimulation of transcriptional activity of this tissue. Overall, our study demonstrates that AMPK signaling and posttranslational regulation of selected proteins may play crucial roles in the control of transcription/translation during daily torpor in mouse lemurs.
Collapse
|
15
|
|
16
|
Tessier SN, Storey KB. To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation. Cell Stress Chaperones 2014; 19:763-76. [PMID: 24789358 PMCID: PMC4389848 DOI: 10.1007/s12192-014-0512-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian hibernators undergo profound behavioral, physiological, and biochemical changes in order to cope with hypothermia, ischemia-reperfusion, and finite fuel reserves over days or weeks of continuous torpor. Against a backdrop of global reductions in energy-expensive processes such as transcription and translation, a subset of genes/proteins are strategically upregulated in order to meet challenges associated with hibernation. Consequently, hibernation involves substantial transcriptional and posttranscriptional regulatory mechanisms and provides a phenomenon with which to understand how a set of common genes/proteins can be differentially regulated in order to enhance stress tolerance beyond that which is possible for nonhibernators. The present review focuses on the involvement of messenger RNA (mRNA) interacting factors that play a role in the regulation of gene/protein expression programs that define the hibernating phenotype. These include proteins involved in mRNA processing (i.e., capping, splicing, and polyadenylation) and the possible role of alternative splicing as a means of enhancing protein diversity. Since the total pool of mRNA remains constant throughout torpor, mechanisms which enhance mRNA stability are discussed in the context of RNA binding proteins and mRNA decay pathways. Furthermore, mechanisms which control the global reduction of cap-dependent translation and the involvement of internal ribosome entry sites in mRNAs encoding stress response proteins are also discussed. Finally, the concept of regulating each of these factors in discrete subcellular compartments for enhanced efficiency is addressed. The analysis draws on recent research from several well-studied mammalian hibernators including ground squirrels, bats, and bears.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
17
|
Identification and expression of microRNA in the brain of hibernating bats, Myotis lucifugus. Gene 2014; 544:67-74. [DOI: 10.1016/j.gene.2014.04.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/22/2014] [Indexed: 01/05/2023]
|
18
|
Philipson CW, Bassaganya-Riera J, Hontecillas R. Animal models of enteroaggregative Escherichia coli infection. Gut Microbes 2013; 4:281-91. [PMID: 23680797 PMCID: PMC3744513 DOI: 10.4161/gmic.24826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) has been acknowledged as an emerging cause of gastroenteritis worldwide for over two decades. Epidemiologists are revealing the role of EAEC in diarrheal outbreaks as a more common occurrence than ever suggested before. EAEC induced diarrhea is most commonly associated with travelers, children and immunocompromised individuals however its afflictions are not limited to any particular demographic. Many attributes have been discovered and characterized surrounding the capability of EAEC to provoke a potent pro-inflammatory immune response, however cellular and molecular mechanisms underlying initiation, progression and outcomes are largely unknown. This limited understanding can be attributed to heterogeneity in strains and the lack of adequate animal models. This review aims to summarize current knowledge about EAEC etiology, pathogenesis and clinical manifestation. Additionally, current animal models and their limitations will be discussed along with the value of applying systems-wide approaches such as computational modeling to study host-EAEC interactions.
Collapse
Affiliation(s)
- Casandra W. Philipson
- Nutritional Immunology and Molecular Medicine Laboratory; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Department of Biomedical Sciences and Pathobiology; VA-MD Regional College of Veterinary Medicine; Virginia Tech; Blacksburg, VA USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Correspondence to: Raquel Hontecillas,
| |
Collapse
|
19
|
Kornfeld SF, Biggar KK, Storey KB. Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: a model of muscle atrophy resistance. GENOMICS PROTEOMICS & BIOINFORMATICS 2012. [PMID: 23200139 PMCID: PMC5054200 DOI: 10.1016/j.gpb.2012.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Muscle wasting is common in mammals during extended periods of immobility. However, many small hibernating mammals manage to avoid muscle atrophy despite remaining stationary for long periods during hibernation. Recent research has highlighted roles for short non-coding microRNAs (miRNAs) in the regulation of stress tolerance. We proposed that they could also play an important role in muscle maintenance during hibernation. To explore this possibility, a group of 10 miRNAs known to be normally expressed in skeletal muscle of non-hibernating mammals were analyzed by RT-PCR in hibernating little brown bats, Myotis lucifugus. We then compared the expression of these miRNAs in euthermic control bats and bats in torpor. Our results showed that compared to euthermic controls, significant, albeit modest (1.2–1.6 fold), increases in transcript expression were observed for eight mature miRNAs, including miR-1a-1, miR-29b, miR-181b, miR-15a, miR-20a, miR-206 and miR-128-1, in the pectoral muscle of torpid bats. Conversely, expression of miR-21 decreased by 80% during torpor, while expression of miR-107 remained unaffected. Interestingly, these miRNAs have been either validated or predicted to affect multiple muscle-specific factors, including myostatin, FoxO3a, HDAC4 and SMAD7, and are likely involved in the preservation of pectoral muscle mass and functionality during bat hibernation.
Collapse
Affiliation(s)
- Samantha F Kornfeld
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | | |
Collapse
|
20
|
Suppression of MAPKAPK2 during mammalian hibernation. Cryobiology 2012; 65:235-41. [PMID: 22771537 DOI: 10.1016/j.cryobiol.2012.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/01/2012] [Accepted: 06/27/2012] [Indexed: 11/23/2022]
Abstract
Metabolic signaling coordinates the transition by hibernating mammals from euthermia into profound torpor. Organ-specific responses by activated p38 mitogen activated protein kinase (MAPK) are known to contribute to this transition. Therefore, we hypothesized that the MAPK-activated protein kinase-2 (MAPKAPK2), a downstream target of p38 MAPK, would also be active in establishing the torpid state. Kinetic parameters of MAPKAPK2 from skeletal muscle of Richardson's ground squirrels, Spermophilus richardsonii, were analyzed using a fluorescence assay. MAPKAPK2 activity was 27.4±1.27 pmol/min/mg in muscle from euthermic squirrels and decreased by ∼63% during cold torpor, while total protein levels were unchanged (as assessed by immunoblotting). In vitro treatment of MAPKAPK2 via stimulation of endogenous phosphatases and addition of commercial alkaline phosphatase decreased enzyme activity to only ∼3-5% of its original value in muscle extracts from both euthermic and hibernating squirrels suggesting that posttranslational modification suppresses MAPKAPK2 during the transition from euthermic to torpid states. Enzyme S₀.₅ and n(H) values for ATP and peptide substrates changed significantly between euthermia and torpor, and also between assays at 22 versus 10 °C but, kinetic parameters were actually closely conserved when values for the euthermic enzyme at 22 °C were directly compared with the hibernator enzyme at 10 °C. Arrhenius plots showed significantly different activation energies of 40.8±0.7 and 54.3±2.7 kJ/mol for the muscle enzyme from euthermic versus torpid animals, respectively but MAPKAPK2 from the two physiological states showed no difference in sensitivity to urea denaturation. Overall, the results show that total activity of MAPKAPK2 is in fact reduced, despite previous findings of p38 MAPK activation, and kinetic parameters are altered when ground squirrels enter torpor but protein stability is not apparently changed. The data suggest that MAPKAPK2 suppression may have a significant role in the differential regulation of muscle target proteins when ground squirrels enter torpor.
Collapse
|
21
|
HIF-1α regulation in mammalian hibernators: role of non-coding RNA in HIF-1α control during torpor in ground squirrels and bats. J Comp Physiol B 2012; 182:849-59. [PMID: 22526261 DOI: 10.1007/s00360-012-0662-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/27/2012] [Accepted: 04/01/2012] [Indexed: 12/19/2022]
Abstract
A potential role for non-coding RNAs, miR-106b and antisense hypoxia inducible transcription factor-1 (HIF-1α), in HIF-1α regulation during mammalian hibernation was investigated in two species, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and the little brown bat (Myotis lucifugus). Both species showed differential regulation of HIF-1α during hibernation. HIF-1α protein levels increased significantly in skeletal muscle of both species when animals entered torpor, as well as in bat liver. HIF-1α mRNA levels correlated with the protein increase in bat skeletal muscle and liver but not in squirrel skeletal muscle. Antisense HIF-1α transcripts were identified in skeletal muscle of both hibernators. The expression of antisense HIF-1α was reduced in skeletal muscle of torpid bats compared with euthermic controls, suggesting that release of inhibition by the antisense RNA contributes to regulating HIF-1α translation in this tissue during torpor. The expression of miR-106b, a microRNA associated with HIF-1α regulation, also decreased during torpor in both skeletal muscle and liver of bats and in ground squirrel skeletal muscle. These data present the first evidence that non-coding RNA provides novel post-transcriptional mechanisms of HIF-1α regulation when hibernators descend into deep cold torpor, and also demonstrate that these mechanisms are conserved in two divergent mammalian orders (Rodentia and Chiroptera).
Collapse
|
22
|
Brooks NE, Myburgh KH, Storey KB. Myostatin levels in skeletal muscle of hibernating ground squirrels. ACTA ACUST UNITED AC 2011; 214:2522-7. [PMID: 21753045 DOI: 10.1242/jeb.055764] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myostatin, a negative regulator of muscle mass, is elevated during disuse and starvation. Mammalian hibernation presents a unique scenario, where animals are hypocaloric and in torpor, but the extent of muscle protein loss is minimized. We hypothesized that myostatin expression, which is usually increased early in disuse and under hypocaloric conditions, could be suppressed in this unique model. Skeletal muscle was collected from thirteen-lined ground squirrels, Spermophilus tridecemlineatus, at six time points during hibernation: control euthermic (CON); entrance into hibernation (ENT), body temperature (T(b)) falling; early hibernation (EHib), stable T(b) in torpor for 24 h; late hibernation (LHib), stable T(b) in torpor for 3 days; early arousal (EAr), T(b) rising; and arousal (AR), T(b) restored to 34-37°C for about 18 h. There was no significant increase of myostatin during ENT, EHib or LHib. Unexpectedly, there were approximately sixfold increases in myostatin protein levels as squirrels arose from torpor. The elevation during EAr remained high in AR, which represented an interbout time period. Mechanisms that could release the suppression or promote increased levels of myostatin were assessed. SMAD2 and phosphorylated SMAD2 were increased during EHib, but only the phosphorylated SMAD2 during AR mirrored increases in myostatin. Follistatin, a negative regulator of myostatin, did not follow the same time course as myostatin or its signaling pathway, indicating more control of myostatin at the signaling level. However, SMAD7, an inhibitory SMAD, did not appear to play a significant role during deep hibernation. Hibernation is an excellent natural model to study factors involved in the endogenous intracellular mechanisms controlling myostatin.
Collapse
Affiliation(s)
- Naomi E Brooks
- Department of Physiological Sciences, Stellenbosch University, Matieland, 7602 Stellenbosch, South Africa.
| | | | | |
Collapse
|
23
|
Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Mol Cell Biochem 2010; 344:151-62. [PMID: 20617369 DOI: 10.1007/s11010-010-0538-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/24/2010] [Indexed: 01/03/2023]
Abstract
Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.
Collapse
|
24
|
Han DS, Huang HP, Wang TG, Hung MY, Ke JY, Chang KT, Chang HY, Ho YP, Hsieh WY, Yang WS. Transcription activation of myostatin by trichostatin A in differentiated C2C12 myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways. J Cell Biochem 2010; 111:564-73. [DOI: 10.1002/jcb.22740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Norrby M, Tågerud S. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) in skeletal muscle atrophy and hypertrophy. J Cell Physiol 2010; 223:194-201. [PMID: 20049871 DOI: 10.1002/jcp.22023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Skeletal muscle is a highly plastic tissue. Overall muscle growth (hypertrophy) or muscle wasting (atrophy) results from alterations in intracellular signaling pathways with important regulatory steps occurring in the nucleus as well as in the cytoplasm. Previous studies have identified components of the Akt/mTor pathway as well as the p38 MAPK pathway as important for skeletal muscle hypertrophy and/or atrophy. The present study tests the hypothesis that MK2, a substrate of p38 which following phosphorylation, can be exported from the nucleus in a complex with p38, may be important for skeletal muscle growth. The expression of MK2 was examined in denervated mouse hind-limb (atrophic) and hemidiaphragm (transiently hypertrophic) muscles. MK2 mRNA expression decreased after denervation in both atrophic (48% of innervated controls, P < 0.001) and hypertrophic muscle (34% of innervated controls, P < 0.01) but MK2 protein expression decreased only in atrophic muscle (32% of innervated controls, P < 0.01). The level of T205 phosphorylated MK2 increased after denervation in both atrophic (fourfold increase, P < 0.01) and hypertrophic muscles (almost sevenfold increase, P < 0.001) whereas the level of T317 phosphorylated MK2 (necessary for nuclear export) increased after denervation in hypertrophic muscle (nearly threefold increase, P < 0.001) but not in atrophic muscle. Logarithmically transformed relative changes in MK2 phosphorylated at T317 correlated well (r(2) = 0.7737) with relative changes in muscle weight. The results suggest a role for MK2 in the regulation of muscle mass, a role which, at least in part, may be related to determining the subcellular localization of p38 in muscle fibers.
Collapse
Affiliation(s)
- Marlene Norrby
- School of Pure and Applied Natural Sciences, University of Kalmar, Kalmar, Sweden.
| | | |
Collapse
|
26
|
Storey KB, Heldmaier G, Rider MH. Mammalian Hibernation: Physiology, Cell Signaling, and Gene Controls on Metabolic Rate Depression. DORMANCY AND RESISTANCE IN HARSH ENVIRONMENTS 2010. [DOI: 10.1007/978-3-642-12422-8_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
|
28
|
Choi H, Selpides PJI, Nowell MM, Rourke BC. Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts. Am J Physiol Regul Integr Comp Physiol 2009; 297:R578-86. [PMID: 19553499 DOI: 10.1152/ajpregu.00236.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We performed 2 wk of mechanical overload by synergist ablation on plantaris muscles from a small rodent hibernator, Spermophilus lateralis. While this muscle displays prominent myosin heavy-chain (MyHC) isoform shifts during hibernation, sensitivity to mechanical loading as a stimulus for muscle mass and isoform plasticity has not been demonstrated. Squirrel muscles, whether during hibernation or not, potentially are less sensitive to mechanical unloading, but we hypothesized that increased loading would produce the typical mammalian response of greater plantaris mass and MyHC shifts. Mechanical overload produced a 50% increase in muscle mass but, surprisingly, no changes in MyHC isoform protein or mRNA expression, despite previously observed fast-to-slow MyHC isoform switching during hibernation. Citrate synthase enzyme activity, as well as mRNA expression of creatine kinase and the muscle growth factor myostatin, were all unchanged. The mRNA expression of critical muscle atrophy genes decreased by 50% during hypertrophy, including ubiquitin ligases MuRF1 and MAFbx, and the related transcription factor FOXO-1a. Insulin-like growth factor (IGF-1) and hypoxia-inducible factor (HIF-1alpha) mRNA expression was elevated by 400% and 150%. Fast-to-slow MyHC isoform shifts appear unnecessary to support the increased recruitment of the plantaris muscle, shifts which are seen in other rodent models. Our results are consistent with muscular activity during interbout arousals as a potential mechanism to preserve muscle mass, but illustrate the primary importance of other seasonal factors besides patterns of muscle activation which must act in concert to alter MyHC isoforms and muscle fiber type during hibernation.
Collapse
Affiliation(s)
- Hyung Choi
- Dept. of Biological Sciences, California State Univ., Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA
| | | | | | | |
Collapse
|
29
|
Michaelidis B, Hatzikamari M, Antoniou V, Anestis A, Lazou A. Stress activated protein kinases, JNKs and p38 MAPK, are differentially activated in ganglia and heart of land snail Helix lucorum (L.) during seasonal hibernation and arousal. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:149-53. [DOI: 10.1016/j.cbpa.2009.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
|