1
|
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:ph16030381. [PMID: 36986481 PMCID: PMC10056067 DOI: 10.3390/ph16030381] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery.
Collapse
|
2
|
Miranda GHN, Alencar de Oliveira Lima L, Bittencourt LO, dos Santos SM, Platini Caldas de Souza M, Nogueira LS, de Oliveira EHC, Monteiro MC, Dionizio A, Leite AL, Pessan JP, Buzalaf MAR, Lima RR. Effects of long-term fluoride exposure are associated with oxidative biochemistry impairment and global proteomic modulation, but not genotoxicity, in parotid glands of mice. PLoS One 2022; 17:e0261252. [PMID: 35085268 PMCID: PMC8794182 DOI: 10.1371/journal.pone.0261252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fluoride has become widely used in dentistry because of its effectiveness in caries control. However, evidence indicates that excessive intake interferes with the metabolic processes of different tissues. Thus, this study aimed to investigate the effects of long-term exposure to F on the parotid salivary gland of mice, from the analysis of oxidative, proteomic and genotoxic parameters. MATERIALS AND METHODS The animals received deionized water containing 0, 10 or 50 mg/L of F, as sodium fluoride, for 60 days. After, parotid glands were collected for analysis of oxidative biochemistry, global proteomic profile, genotoxicity assessment and histopathological analyses. RESULTS The results revealed that exposure to fluoride interfered in the biochemical homeostasis of the parotid gland, with increased levels of thiobarbituric acid reactive species and reduced glutathione in the exposed groups; as well as promoted alteration of the glandular proteomic profile in these groups, especially in structural proteins and proteins related to oxidative stress. However, genotoxic assessment demonstrated that exposure to fluoride did not interfere with DNA integrity in these concentrations and durations of exposure. Also, it was not observed histopathological alterations in parotid gland. CONCLUSIONS Thus, our results suggest that long-term exposure to fluoride promoted modulation of the proteomic and biochemical profile in the parotid glands, without inducing damage to the genetic component. These findings reinforce the importance of rationalizing the use of fluorides to maximize their preventative effects while minimizing the environmental risks.
Collapse
Affiliation(s)
- Giza Hellen Nonato Miranda
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Sávio Monteiro dos Santos
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| | | | | | | | - Marta Chagas Monteiro
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Aline Lima Leite
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
3
|
Lima LADO, Miranda GHN, Aragão WAB, Bittencourt LO, Dos Santos SM, de Souza MPC, Nogueira LS, de Oliveira EHC, Monteiro MC, Dionizio A, Leite AL, Pessan JP, Buzalaf MAR, Lima RR. Effects of Fluoride on Submandibular Glands of Mice: Changes in Oxidative Biochemistry, Proteomic Profile, and Genotoxicity. Front Pharmacol 2021; 12:715394. [PMID: 34646132 PMCID: PMC8503261 DOI: 10.3389/fphar.2021.715394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 01/21/2023] Open
Abstract
Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in different tissues have been associated with its excessive exposure. Thus, this study aimed to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic parameters of submandibular glands. Twenty one old rats (n = 30) were allocated into three groups: 60 days administration of drinking water containing 10 mgF/L, 50 mgF/L, or only deionized water (control). The submandibular glands were collected for oxidative biochemistry, protein expression profile, and genotoxic potential analyses. The results showed that both F concentrations increased the levels of thiobarbituric acid–reactive substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile, mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L induced significant changes in DNA integrity. These findings reinforce the importance of continuous monitoring of F concentration in drinking water and the need for strategies to minimize F intake from other sources to obtain maximum preventive/therapeutic effects and avoid potential adverse effects.
Collapse
Affiliation(s)
| | - Giza Hellen Nonato Miranda
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Sávio Monteiro Dos Santos
- Laboratory of Clinical Immunology and Oxidative Stress, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | | | - Lygia S Nogueira
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Marta Chagas Monteiro
- Laboratory of Clinical Immunology and Oxidative Stress, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Lima Leite
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Multiple dietary components have the potential to positively affect bone mineral density in early life and reduce loss of bone mass with aging. In addition, regular weight-bearing physical activity has a strong positive effect on bone through activation of osteocyte signaling. We will explore possible synergistic effects of dietary components and mechanical stimuli for bone health by identifying dietary components that have the potential to alter the response of osteocytes to mechanical loading. RECENT FINDINGS Several (sub)cellular aspects of osteocytes determine their signaling towards osteoblasts and osteoclasts in response to mechanical stimuli, such as the osteocyte cytoskeleton, estrogen receptor α, the vitamin D receptor, and the architecture of the lacunocanalicular system. Potential modulators of these features include 1,25-dihydroxy vitamin D3, several forms of vitamin K, and the phytoestrogen genistein. Multiple dietary components potentially affect osteocyte function and therefore may have a synergistic effect on bone health when combined with a regime of physical activity.
Collapse
Affiliation(s)
- Hubertine M E Willems
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
A novel “Turn-On” fluorescent probe for F− detection in aqueous solution and its application in live-cell imaging. Anal Chim Acta 2014; 849:36-42. [DOI: 10.1016/j.aca.2014.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
|
6
|
Fluoride inhibits the response of bone cells to mechanical loading. Odontology 2011; 99:112-8. [DOI: 10.1007/s10266-011-0013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/03/2010] [Indexed: 12/22/2022]
|
7
|
Mori K, Kashiwagi A, Yomo T. Single-cell isolation and cloning of Tetrahymena thermophila cells with a fluorescence-activated cell sorter. J Eukaryot Microbiol 2010; 58:37-42. [PMID: 21129084 DOI: 10.1111/j.1550-7408.2010.00517.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a method for cloning cells of the ciliate Tetrahymena thermophila in chemically defined medium (CDM) using a fluorescence-activated cell sorter (FACS). Although T. thermophila is a model unicellular eukaryote, two major technical difficulties remain in its cloning. First, T. thermophila fails to proliferate from low density in CDM, particularly if the inoculum contains single cells. Second, general cloning methods are time consuming and have low throughput. Here, we modified the CDM by addition of bovine serum albumin that helped growth from an inoculum with a density of 10 cell/ml (1 cell/100 μl). In addition, we applied a FACS for isolation of single cells. We showed that it is possible to separate cell populations based on the presence or absence of phagocytosed fluorescent beads and to isolate single cells in a modified CDM by FACS. Our techniques allow the direct isolation of single cells and facilitate the establishment of clonal strains.
Collapse
Affiliation(s)
- Kotaro Mori
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
8
|
Li XC, Hopfer U, Zhuo JL. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway. Am J Physiol Renal Physiol 2009; 297:F1342-52. [PMID: 19726542 DOI: 10.1152/ajprenal.90734.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin-dependent pathway, plays an important role in AT1 (AT1a)-mediated uptake of extracellular ANG II and ANG II-induced NHE-3 expression in PT cells.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|