1
|
Sadeghi M, Azargoonjahromi A, Nasiri H, Yaghoobi A, Sadeghi M, Chavoshi SS, Baghaeikia S, Mahzari N, Valipour A, Razeghi Oskouei R, Shahkarami F, Amiri F, Mayeli M. Altered brain connectivity in mild cognitive impairment is linked to elevated tau and phosphorylated tau, but not to GAP-43 and Amyloid-β measurements: a resting-state fMRI study. Mol Brain 2024; 17:60. [PMID: 39215335 PMCID: PMC11363600 DOI: 10.1186/s13041-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Mild Cognitive Impairment (MCI) is a neurological condition characterized by a noticeable decline in cognitive abilities that falls between normal aging and dementia. Along with some biomarkers like GAP-43, Aβ, tau, and P-tau, brain activity and connectivity are ascribed to MCI; however, the link between brain connectivity changes and such biomarkers in MCI is still being investigated. This study explores the relationship between biomarkers like GAP-43, Aβ, tau, and P-tau, and brain connectivity. We enrolled 25 Participants with normal cognitive function and 23 patients with MCI. Levels of GAP-43, Aβ1-42, t-tau, and p-tau181p in the CSF were measured, and functional connectivity measures including ROI-to-voxel (RV) correlations and the DMN RV-ratio were extracted from the resting-state fMRI data. P-values below 0.05 were considered significant. The results showed that in CN individuals, higher connectivity within the both anterior default mode network (aDMN) and posterior DMN (pDMN) was associated with higher levels of the biomarker GAP-43. In contrast, MCI individuals showed significant negative correlations between DMN connectivity and levels of tau and P-tau. Notably, no significant correlations were found between Aβ levels and connectivity measures in either group. These findings suggest that elevated levels of GAP-43 indicate increased functional connectivity in aDMN and pDMN. Conversely, elevated levels of tau and p-tau can disrupt connectivity through various mechanisms. Thus, the accumulation of tau and p-tau can lead to impaired neuronal connectivity, contributing to cognitive decline.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamide Nasiri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arash Yaghoobi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadeghi
- Department of Nuclear Medicine, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shilan Baghaeikia
- Faculty of the Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nastaran Mahzari
- Department of Pharmacy, School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Arina Valipour
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Razeghi Oskouei
- Department of clinical laboratory sciences, Qazvin University of medical sciences, Qazvin, Iran
| | - Farshad Shahkarami
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hosseini L, Sadigh-Eteghad S, Farajdokht F, Salehi-Pourmehr H, Pasokh A, Ziaee M, Sandoghchian Shotorbani S, Hosseini MJ, Mahmoudi J. Synergistic effects of combined therapy with cerebrolysin and enriched environment on anxiety-like behavior and spatial cognitive deficits in posttraumatic stress disorder-like mouse model. Behav Pharmacol 2023; 34:197-205. [PMID: 36853847 DOI: 10.1097/fbp.0000000000000722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a serious neuropsychiatric disorder that occurs after exposure to stressful, fearful, or troubling events. Cerebrolysin (CBL), consists of low molecular weights neurotrophic factors and amino acids obtained from purified porcine brain proteins. This study aimed to evaluate the possible therapeutic effects of enriched environment (EE) and CBL alone or combined for reducing anxiety and cognitive deficits in PTSD-like mouse models. For this purpose, inescapable electric foot shocks were delivered to Balb/c mice for two consecutive days. Then mice were treated with CBL (2.5 mL/kg) and/or were kept in EE (2 h per day) or received their combination for 14 consecutive days. The hole-board test and Lashley III paradigm were used to assess anxiety and spatial learning and memory, respectively. Changes in the serum corticosterone level and expression of synaptic elements, including; growth-associated protein 43, post-synaptic density 95, and synaptophysin were assessed in the hippocampus. This model caused anxiety and spatial memory impairment associated with increased serum corticosterone levels and decreased synaptic elements. Nevertheless, CBL and/or combination treatment could reverse behavioral and molecular alterations. Our findings indicated that CBL, separately or in combination with EE, is effective in reducing anxiety and spatial memory impairment in PTSD-like mice.
Collapse
Affiliation(s)
| | | | | | - Hanieh Salehi-Pourmehr
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz
| | | | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh
| | | | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
3
|
Zhou Q, Chen Y, Tang H, Zhang L, Ma Y, Bai D, Kong Y. Transcranial direct current stimulation alleviated ischemic stroke induced injury involving the BDNF-TrkB signaling axis in rats. Heliyon 2023; 9:e14946. [PMID: 37089354 PMCID: PMC10114158 DOI: 10.1016/j.heliyon.2023.e14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Ischemic stroke causes a complicated sequence of apoptotic cascades leading to neuronal damage and functional impairments. Transcranial direct current stimulation (tDCS) is a non-invasive treatment technique that uses electrodes to deliver weak current to the head. It could influence brain activity and has a crucial role in neuronal survival and plasticity. The current study investigated the neuroprotective effects and potential mechanisms of tDCS by brain-derived neurotrophic factor (BDNF) and its related receptor tropomyosin-receptor kinase B (TrkB) against apoptosis following ischemic injury in vivo. The effect of consecutive treatment with tDCS for seven days on rats after Middle cerebral artery occlusion/reperfusion (MCAO/R) surgery was studied. Western blotting, immunofluorescent staining, TUNEL assay, and electron microscope were conducted seven days after tDCS treatment, and the motor function was assessed at 1, 3, and 7 days. Activities of BDNF-TrkB signaling axis and apoptosis-related proteins were determined in the cerebral cortex. At seven days after tDCS treatment, it increased BDNF levels and promoted the regeneration of axons compared with the MCAO/R group. There was also a reduction in neuronal apoptosis and improved functional deficits. Whereafter, a TrkB receptor inhibitor K252a was administrated to clarify whether the neuroprotection of tDCS is exerted via BDNF-TrkB signaling. The results depicted that K252a application significantly inhibited the neuroprotection impact of tDCS treatment. It was accompanied by a significant downregulation of phosphorylation of TrkB, PI3K, and Akt. Our study investigated the neuroprotective effects of tDCS against ischemic injury. The results indicate that upregulation of BDNF and its critical receptor TrkB, as well as its downstream PI3K/Akt pathway, were involved in the protective effects exerted by tDCS.
Collapse
|
4
|
Almeida AS, Nunes F, Marques DM, Machado ACL, Oliveira CB, Porciuncula LO. Sex differences in maternal odor preferences and brain levels of GAP-43 and sonic hedgehog proteins in infant SHR and Wistar Kyoto rats. Behav Brain Res 2023; 436:114102. [DOI: 10.1016/j.bbr.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
5
|
Qiang Q, Skudder-Hill L, Toyota T, Wei W, Adachi H. CSF GAP-43 as a biomarker of synaptic dysfunction is associated with tau pathology in Alzheimer's disease. Sci Rep 2022; 12:17392. [PMID: 36253408 PMCID: PMC9576773 DOI: 10.1038/s41598-022-20324-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023] Open
Abstract
To test whether cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) concentration is elevated in Alzheimer's disease (AD) dementia and its associations with other hallmarks of AD, we examined the CSF GAP-43 measurements of 787 participants (245 cognitively normal (CN), 415 individuals with mild cognitive impairment (MCI) and 127 individuals with AD dementia) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Associations were investigated between CSF GAP-43 and clinical diagnosis, Aβ/tau/neurodegeneration (AT(N)) status, CSF and blood biomarkers of AD, cognitive measurements and brain neuroimaging findings. CSF GAP-43 levels were increased in patients with AD dementia (mean, 6331.05 pg/ml) compared with the CN (mean, 5001.05 pg/ml) and MCI (mean, 5118.8 pg/ml) (P < 0.001) groups. CSF GAP-43 correlated with CSF phosphorylated tau 181(p-tau) (r = 0.768, P < 0.001), and had high diagnostic accuracy in differentiating tau positive status vs. tau negative status (area under the receiver operating characteristic curve, 0.8606). CSF GAP-43 was particularly elevated among individuals with tau positive status. High CSF GAP-43 was associated with longitudinal deterioration of cognitive scores and brain neuroimaging findings. CSF GAP-43 was associated with a clinical diagnosis of AD dementia and with an individual's tau status, cognitive measurements and findings from neuroimaging. This study implies that CSF GAP-43 as a biomarker of synaptic dysfunction could predict the disease progression of AD patients.
Collapse
Affiliation(s)
- Qiang Qiang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China ,grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Loren Skudder-Hill
- grid.12527.330000 0001 0662 3178Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China
| | - Tomoko Toyota
- grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Wenshi Wei
- grid.8547.e0000 0001 0125 2443Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Hiroaki Adachi
- grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
6
|
Cerebrospinal fluid growth-associated protein 43 levels in patients with progressive and stable mild cognitive impairment. Aging Clin Exp Res 2022; 34:2399-2406. [DOI: 10.1007/s40520-022-02202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
|
7
|
Yang G, Fan X, Mazhar M, Yang S, Xu H, Dechsupa N, Wang L. Mesenchymal Stem Cell Application and Its Therapeutic Mechanisms in Intracerebral Hemorrhage. Front Cell Neurosci 2022; 16:898497. [PMID: 35769327 PMCID: PMC9234141 DOI: 10.3389/fncel.2022.898497] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH), a common lethal subtype of stroke accounting for nearly 10–15% of the total stroke disease and affecting two million people worldwide, has a high mortality and disability rate and, thus, a major socioeconomic burden. However, there is no effective treatment available currently. The role of mesenchymal stem cells (MSCs) in regenerative medicine is well known owing to the simplicity of acquisition from various sources, low immunogenicity, adaptation to the autogenic and allogeneic systems, immunomodulation, self-recovery by secreting extracellular vesicles (EVs), regenerative repair, and antioxidative stress. MSC therapy provides an increasingly attractive therapeutic approach for ICH. Recently, the functions of MSCs such as neuroprotection, anti-inflammation, and improvement in synaptic plasticity have been widely researched in human and rodent models of ICH. MSC transplantation has been proven to improve ICH-induced injury, including the damage of nerve cells and oligodendrocytes, the activation of microglia and astrocytes, and the destruction of blood vessels. The improvement and recovery of neurological functions in rodent ICH models were demonstrated via the mechanisms such as neurogenesis, angiogenesis, anti-inflammation, anti-apoptosis, and synaptic plasticity. Here, we discuss the pathological mechanisms following ICH and the therapeutic mechanisms of MSC-based therapy to unravel new cues for future therapeutic strategies. Furthermore, some potential strategies for enhancing the therapeutic function of MSC transplantation have also been suggested.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Nathupakorn Dechsupa,
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- Li Wang,
| |
Collapse
|
8
|
Li J, Xiao L, He D, Luo Y, Sun H. Mechanism of White Matter Injury and Promising Therapeutic Strategies of MSCs After Intracerebral Hemorrhage. Front Aging Neurosci 2021; 13:632054. [PMID: 33927608 PMCID: PMC8078548 DOI: 10.3389/fnagi.2021.632054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke with high disability and high mortality rates, and there is no effective treatment. The predilection site of ICH is in the area of the basal ganglia and internal capsule (IC), where exist abundant white matter (WM) fiber tracts, such as the corticospinal tract (CST) in the IC. Proximal or distal white matter injury (WMI) caused by intracerebral parenchymal hemorrhage is closely associated with poor prognosis after ICH, especially motor and sensory dysfunction. The pathophysiological mechanisms involved in WMI are quite complex and still far from clear. In recent years, the neuroprotection and repairment capacity of mesenchymal stem cells (MSCs) has been widely investigated after ICH. MSCs exert many unique biological effects, including self-recovery by producing growth factors and cytokines, regenerative repair, immunomodulation, and neuroprotection against oxidative stress, providing a promising cellular therapeutic approach for the treatment of WMI. Taken together, our goal is to discuss the characteristics of WMI following ICH, including the mechanism and potential promising therapeutic targets of MSCs, aiming at providing new clues for future therapeutic strategies.
Collapse
Affiliation(s)
- Jing Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linglong Xiao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dian He
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhao Luo
- Division of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of The Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Huang J, Shen C, Ye R, Shi Y, Li W. The Effect of Early Maternal Separation Combined With Adolescent Chronic Unpredictable Mild Stress on Behavior and Synaptic Plasticity in Adult Female Rats. Front Psychiatry 2021; 12:539299. [PMID: 33746787 PMCID: PMC7973020 DOI: 10.3389/fpsyt.2021.539299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Our aims were to evaluate the depression model of early maternal separation (MS) combined with adolescent chronic unpredictable mild stress (CUMS) in female adult SD rats to observe the behavior and the expressions of synaptic proteins in rats and to provide a reference for the screening of antidepressant drug activity. In our study, MS and CUMS were conducted to establish a dual stress model on female rats. Behavioral tests, including the sucrose preference test, open field test, and zero maze test, were used to detect depression-like and anxiety-like behavior of animals. Nissl staining was used to detect the number of neuronal cells in the hippocampus CA1 and DG regions of rats from each group. Synaptophysin (SYN), postsynaptic density-95 (PSD-95), and growth-associated protein-43 (GAP-43) expressions in the hippocampus were detected by western blot. Expression of the hippocampus SYN protein was further detected by immunohistochemistry. Rats in the MS+CUMS group presented more serious depression-like and anxiety-like behavior than in the MS group. Also, few Nissl bodies in the hippocampus CA1 and DG regions, less percentage of SYN-positive cells, and downregulated expressions of SYN, PSD-95, and GAP43 were found in the hippocampus of rats in MS+CUMS group. In conclusion, adult female rats that underwent MS and CUMS performed more critical depression-like and anxiety-like behaviors, and this process may be resulted from synaptic plasticity impairment.
Collapse
Affiliation(s)
- Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chongkun Shen
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ran Ye
- Heyuan People's Hospital, Heyuan, China.,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Golbar SJ, Gaeini AA, Jahromi MK. The Effects of Exercise on Cerebellar Growth-Associated Protein 43 and Adenylyl Cyclase- Associated Protein 1 Gene Expression and Proteins in Diabetic-Induced Neuropathy and Healthy Male Wistar Rats. Int J Prev Med 2021; 12:137. [PMID: 34912513 PMCID: PMC8631120 DOI: 10.4103/ijpvm.ijpvm_416_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The effect of exercise on the cerebellum cells in diabetic-induced neuropathy and healthy situations is not clear yet. Growth-associated protein 43 (GAP-43) and adenylyl cyclase-associated protein 1 (CAP-1) proteins can restore nerve cells. This study aimed to investigate the effect of aerobic exercise on GAP-43 and CAP-1 and their mRNA in the cerebellar tissue of diabetic-induced neuropathy and healthy Wistar rats. METHODS Around 40 healthy male Wistar rats with a mean weight of 271 ± 11.2 g were divided randomly into four groups; healthy aerobic exercise, diabetic-aerobic exercise, healthy-control, and diabetic-control. The exercise group performed aerobic exercise 5 days per week for 6 weeks. RESULTS Exercise increased CAP1 protein in the cerebellum tissue of healthy (P = 0.002) and diabetic (P = 0.002) groups compared with matched control groups. The effect of exercise on CAP1 was greater in diabetic compared with the healthy group (P = 0.002). The expression of CAP1 mRNA in the cerebellum was higher in the healthy exercise compared with the healthy control group (P = 0.002) and in the healthy exercise compared with the diabetic exercise group (P = 0.026). GAP43 protein was lower in the healthy exercise compared with the healthy control group (P = 0.002) while it was higher in diabetic exercise compared to the healthy exercise group (P = 0.002). Expression of GAP43 mRNA in the cerebellum was higher in the healthy (P = 0.002) and diabetic (P = 0.002) exercise groups compared to non-exercise matched groups and in the diabetic control group compared with the healthy control group (P = 0.002). Exercise improved latency in diabetic (P = 0.001) and healthy exercise groups (P = 0.02). No significant difference was found in blood glucose between exercise and control groups (P > 0.05). CONCLUSION Exercise improved cerebellar functions in healthy and diabetic rats, probably mediating by CAP1 protein, even without changing blood glucose.
Collapse
Affiliation(s)
| | - Abbas Ali Gaeini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
- Address for correspondence: Dr. Maryam Koushkie Jahromi, Department of Sport Sciences, Shiraz University, Shiraz, Iran. E-mail:
| |
Collapse
|
11
|
Sheng L, Leshchyns'ka I, Sytnyk V. Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cereb Cortex 2020. [PMID: 29522129 DOI: 10.1093/cercor/bhy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.
Collapse
Affiliation(s)
- Lifu Sheng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Marchini A, Favoino C, Gelain F. Multi-Functionalized Self-Assembling Peptides as Reproducible 3D Cell Culture Systems Enabling Differentiation and Survival of Various Human Neural Stem Cell Lines. Front Neurosci 2020; 14:413. [PMID: 32431590 PMCID: PMC7214803 DOI: 10.3389/fnins.2020.00413] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells-based therapies have shown great potential for central nervous system regeneration, with three-dimensional (3D) culture systems representing a key technique for tissue engineering applications, as well as disease modeling and drug screenings. Self-assembling peptides (SAPs), providing biomimetic synthetic micro-environments regulating cellular functionality and tissue repair, constitute a suitable tool for the production of complex tissue-like structures in vitro. However, one of the most important drawbacks in 3D cultures, obtained via animal-derived substrates and serum-rich media, is the reproducibility and tunability of a standardized methodology capable to coax neural differentiation of different human cell lines. In this work we cultured four distinct human neural stem cell (hNSC) lines in 3D synthetic multifunctionalized hydrogel (named HYDROSAP) for up to 6 weeks. Three-dimensional cultures of differentiating hNSCs exhibited a progressive differentiation and maturation over time. All hNSCs-derived neurons in 3D culture system exhibited randomly organized entangled networks with increasing expression of GABAergic and glutamatergic phenotypes and presence of cholinergic ones. Oligodendrocytes formed insulating myelin sheaths positive for myelin basic protein (MBP). In summary, results demonstrated a successfully standardized and reproducible 3D cell culture system for hNSC differentiation and maturation in serum-free conditions useful for future therapies.
Collapse
Affiliation(s)
- Amanda Marchini
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Chiara Favoino
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
13
|
Rahmati M, Kazemi A. Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 2019; 692:185-194. [PMID: 30682386 DOI: 10.1016/j.gene.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Exercise intensity is known to affect neuroplasticity. Although corticosterone and lactate levels have been linked to neuroplasticity, the effect of different endurance exercise intensity-dependent production of these biochemicals on the behaviour of hippocampal growth cone markers remains incompletely explored. Here, we investigated the effects of three different endurance treadmill training episodes for six weeks on GAP-43 and CAP-1 expression in the hippocampus of adult male Wistar rats. Our findings showed that mild exercise intensity (MEI) with a lactate production slightly higher than the lactate threshold (LT) is the optimal form of physical activity for elevating GAP-43 without changing CAP-1 expression. It was further observed that high exercise intensity (HEI) with the highest level of corticosterone and lactate production, reduced GAP-43 expression, yet increased CAP-1 expression in the hippocampus. Like HEI, we further identified similar expression patterns for these markers in low exercise intensity (LEI) with blood lactate production below LT and corticosterone level similar to MEI. The findings suggested that in high-intensity exercise, the negative pattern of hippocampal neuroplasticity depends on both corticosterone and lactate levels, whereas in low-intensity exercise, the most important factor determining this negative pattern is the lactate level. Generally, MEI with a lactate production of slightly higher than LT is the most optimal intensity for improving hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
14
|
Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc Natl Acad Sci U S A 2019; 116:7483-7492. [PMID: 30923117 PMCID: PMC6462084 DOI: 10.1073/pnas.1818392116] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells reside in 3D microenvironments in living tissues; consequently, 3D cultures gained great interest because they better mimic the natural conditions of cells. Self-assembling peptides (SAPs) are synthetic bioabsorbable biomaterials that can provide customized 3D microenvironments regulating cell functionalities and tissue repair. Here we introduce a SAP-hydrogel designed to support human neural stem cell (hNSC) differentiation in 3D serum-free conditions, generating mature and active human neurons in vitro. We also demonstrate its functional neurorigenerative potential in rat spinal cord injuries, peaking when seeded with hNSCs progeny predifferentiated in vitro for 6 weeks. Despite these promising results, this approach should be confirmed in the future with medium-size animal models and with additional and refined behavioral tests before entering a clinical trial. Three-dimensional cell cultures are leading the way to the fabrication of tissue-like constructs useful to developmental biology and pharmaceutical screenings. However, their reproducibility and translational potential have been limited by biomaterial and culture media compositions, as well as cellular sources. We developed a construct comprising synthetic multifunctionalized hydrogels, serum-free media, and densely seeded good manufacturing practice protocol-grade human neural stem cells (hNSC). We tracked hNSC proliferation, differentiation, and maturation into GABAergic, glutamatergic, and cholinergic neurons, showing entangled electrically active neural networks. The neuroregenerative potential of the “engineered tissue” was assessed in spinal cord injuries, where hNSC-derived progenitors and predifferentiated hNSC progeny, embedded in multifunctionalized hydrogels, were implanted. All implants decreased astrogliosis and lowered the immune response, but scaffolds with predifferentiated hNSCs showed higher percentages of neuronal markers, better hNSC engraftment, and improved behavioral recovery. Our hNSC-construct enables the formation of 3D functional neuronal networks in vitro, allowing novel strategies for hNSC therapies in vivo.
Collapse
|
15
|
Martínez-Ramos C, Doblado LR, Mocholi EL, Alastrue-Agudo A, Petidier MS, Giraldo E, Pradas MM, Moreno-Manzano V. Biohybrids for spinal cord injury repair. J Tissue Eng Regen Med 2019; 13:509-521. [PMID: 30726582 DOI: 10.1002/term.2816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 01/05/2023]
Abstract
Spinal cord injuries (SCIs) result in the loss of sensory and motor function with massive cell death and axon degeneration. We have previously shown that transplantation of spinal cord-derived ependymal progenitor cells (epSPC) significantly improves functional recovery after acute and chronic SCI in experimental models, via neuronal differentiation and trophic glial cell support. Here, we propose an improved procedure based on transplantation of epSPC in a tubular conduit of hyaluronic acid containing poly (lactic acid) fibres creating a biohybrid scaffold. In vitro analysis showed that the poly (lactic acid) fibres included in the conduit induce a preferential neuronal fate of the epSPC rather than glial differentiation, favouring elongation of cellular processes. The safety and efficacy of the biohybrid implantation was evaluated in a complete SCI rat model. The conduits allowed efficient epSPC transfer into the spinal cord, improving the preservation of the neuronal tissue by increasing the presence of neuronal fibres at the injury site and by reducing cavities and cyst formation. The biohybrid-implanted animals presented diminished astrocytic reactivity surrounding the scar area, an increased number of preserved neuronal fibres with a horizontal directional pattern, and enhanced coexpression of the growth cone marker GAP43. The biohybrids offer an improved method for cell transplantation with potential capabilities for neuronal tissue regeneration, opening a promising avenue for cell therapies and SCI treatment.
Collapse
Affiliation(s)
- Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Laura Rodríguez Doblado
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Center, Valencia, Spain
| | | | - Esther Giraldo
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | | |
Collapse
|
16
|
Stefanoska K, Volkerling A, Bertz J, Poljak A, Ke YD, Ittner LM, Ittner A. An N-terminal motif unique to primate tau enables differential protein-protein interactions. J Biol Chem 2018; 293:3710-3719. [PMID: 29382714 DOI: 10.1074/jbc.ra118.001784] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Compared with other mammalian species, humans are particularly susceptible to tau-mediated neurodegenerative disorders. Differential interactions of the tau protein with other proteins are critical for mediating tau's physiological functions as well as tau-associated pathological processes. Primate tau harbors an 11-amino acid-long motif in its N-terminal region (residues 18-28), which is not present in non-primate species and whose function is unknown. Here, we used deletion mutagenesis to remove this sequence region from the longest human tau isoform, followed by glutathione S-transferase (GST) pulldown assays paired with isobaric tags for relative and absolute quantitation (iTRAQ) multiplex labeling, a quantitative method to measure protein abundance by mass spectrometry. Using this method, we found that the primate-specific N-terminal tau motif differentially mediates interactions with neuronal proteins. Among these binding partners are proteins involved in synaptic transmission (synapsin-1 and synaptotagmin-1) and signaling proteins of the 14-3-3 family. Furthermore, we identified an interaction of tau with a member of the annexin family (annexin A5) that was linked to the 11-residue motif. These results suggest that primate Tau has evolved specific residues that differentially regulate protein-protein interactions compared with tau proteins from other non-primate mammalian species. Our findings provide in vitro insights into tau's interactions with other proteins that may be relevant to human disease.
Collapse
Affiliation(s)
| | | | - Josefine Bertz
- From the Dementia Research Unit, School of Medical Sciences
| | - Anne Poljak
- the Bioanalytical Mass Spectrometry Facility, and
| | - Yazi D Ke
- the Motor Neuron Disease Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052 and
| | - Lars M Ittner
- From the Dementia Research Unit, School of Medical Sciences, .,Neuroscience Australia, Sydney, New South Wales 2031, Australia
| | - Arne Ittner
- From the Dementia Research Unit, School of Medical Sciences
| |
Collapse
|
17
|
FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19010200. [PMID: 29315225 PMCID: PMC5796149 DOI: 10.3390/ijms19010200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. We have previously shown that individual therapeutic strategies, transplantation of ependymal stem/progenitor cells of the spinal cord after injury (epSPCi) or FM19G11 pharmacological treatment, induce moderate functional recovery after SCI. Here, the combination of treatments has been assayed for functional and histological analysis. Immediately after severe SCI, one million epSPCi were intramedullary injected, and the FM19G11 compound or dimethyl sulfoxide (DMSO) (as the vehicle control) was administrated via intrathecal catheterization. The combination of treatments, epSPCi and FM19G11, improves locomotor tasks compared to the control group, but did not significantly improve the Basso, Beattie, Bresnahan (BBB) scores for locomotor analysis in comparison with the individual treatments. However, the histological analysis of the spinal cord tissues, two months after SCI and treatments, demonstrated that when we treat the animals with both epSPCi and FM19G11, an improved environment for neuronal preservation was generated by reduction of the glial scar extension. The combinatorial treatment also contributes to enhancing the oligodendrocyte precursor cells by inducing the expression of Olig1 in vivo. These results suggest that a combination of therapies may be an exciting new therapeutic treatment for more efficient neuronal activity recovery after severe SCI.
Collapse
|
18
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
19
|
Requejo-Aguilar R, Alastrue-Agudo A, Cases-Villar M, Lopez-Mocholi E, England R, Vicent MJ, Moreno-Manzano V. Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials 2016; 113:18-30. [PMID: 27810639 DOI: 10.1016/j.biomaterials.2016.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/27/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. Animal models of acute SCI have provided evidence that transplantation of ependymal stem/progenitor cells of the spinal cord (epSPCs) induces functional recovery, while systemic administration of the anti-inflammatory curcumin provides neuroprotection. However, functional recovery from chronic stage SCI requires additional enhancements in available therapeutic strategies. Herein, we report on a combination treatment for SCI using epSPCs and a pH-responsive polymer-curcumin conjugate. The incorporation of curcumin in a pH-responsive polymeric carrier mainchain, a polyacetal (PA), enhances blood bioavailability, stability, and provides a means for highly localized delivery. We find that PA-curcumin enhances neuroprotection, increases axonal growth, and can improve functional recovery in acute SCI. However, when combined with epSPCs, PA-curcumin also enhances functional recovery in a rodent model of chronic SCI. This suggests that combination therapy may be an exciting new therapeutic option for the treatment of chronic SCI in humans.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Ana Alastrue-Agudo
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Marta Cases-Villar
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Eric Lopez-Mocholi
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Richard England
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Príncipe Felipe Research Center, Valencia, Spain.
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Príncipe Felipe Research Center, Valencia, Spain; Universidad Católica de Valencia, Valencia, Spain.
| |
Collapse
|
20
|
Yoshida S, Yamamoto N, Wada N, Tomokiyo A, Hasegawa D, Hamano S, Mitarai H, Monnouchi S, Yuda A, Maeda H. GDNF From Human Periodontal Ligament Cells Treated With Pro-Inflammatory Cytokines Promotes Neurocytic Differentiation of PC12 Cells. J Cell Biochem 2016; 118:699-708. [PMID: 27463736 DOI: 10.1002/jcb.25662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is known to mediate multiple biological activities such as promotion of cell motility and proliferation, and morphogenesis. However, little is known about its effects on periodontal ligament (PDL) cells. Recently, we reported that GDNF expression is increased in wounded rat PDL tissue and human PDL cells (HPDLCs) treated with pro-inflammatory cytokines. Here, we investigated the associated expression of GDNF and the pro-inflammatory cytokine interleukin-1 beta (IL-1β) in wounded PDL tissue, and whether HPDLCs secrete GDNF which affects neurocytic differentiation. Rat PDL cells near the wounded area showed intense immunoreactions against an anti-GDNF antibody, where immunoreactivity was also increased against an anti-IL-1β antibody. Compared with untreated cells, HPDLCs treated with IL-1β or tumor necrosis factor-alpha showed an increase in the secretion of GDNF protein. Conditioned medium of IL-1β-treated HPDLCs (IL-1β-CM) increased neurite outgrowth of PC12 rat adrenal pheochromocytoma cells. The expression levels of two neural regeneration-associated genes, growth-associated protein-43 (Gap-43), and small proline-rich repeat protein 1A (Sprr1A), were also upregulated in IL-1β-CM-treated PC12 cells. These stimulatory effects of IL-1β-CM were significantly inhibited by a neutralizing antibody against GDNF. In addition, U0126, a MEK inhibitor, inhibited GDNF-induced neurite outgrowth of PC12 cells. These findings suggest that an increase of GDNF in wounded PDL tissue might play an important role in neural regeneration probably via the MEK/ERK signaling pathway. J. Cell. Biochem. 118: 699-708, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Naohide Yamamoto
- Section of Endodontology & Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naohisa Wada
- Division of General Oral Care, Kyushu University Hospital, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hiromi Mitarai
- Section of Endodontology & Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Monnouchi
- Section of Endodontology & Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Asuka Yuda
- Section of Endodontology & Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Maidashi, Higashi-ku, Fukuoka, Japan.,Section of Endodontology & Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Sun F, Nguyen T, Jin X, Huang R, Chen Z, Cunningham RL, Singh M, Su C. Pgrmc1/BDNF Signaling Plays a Critical Role in Mediating Glia-Neuron Cross Talk. Endocrinology 2016; 157:2067-79. [PMID: 26990062 PMCID: PMC4870882 DOI: 10.1210/en.2015-1610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone (P4) exerts robust cytoprotection in brain slice cultures (containing both neurons and glia), yet such protection is not as evident in neuron-enriched cultures, suggesting that glia may play an indispensable role in P4's neuroprotection. We previously reported that a membrane-associated P4 receptor, P4 receptor membrane component 1, mediates P4-induced brain-derived neurotrophic factor (BDNF) release from glia. Here, we sought to determine whether glia are required for P4's neuroprotection and whether glia's roles are mediated, at least partially, via releasing soluble factors to act on neighboring neurons. Our data demonstrate that P4 increased the level of mature BDNF (neuroprotective) while decreasing pro-BDNF (potentially neurotoxic) in the conditioned media (CMs) of cultured C6 astrocytes. We examined the effects of CMs derived from P4-treated astrocytes (P4-CMs) on 2 neuronal models: 1) all-trans retinoid acid-differentiated SH-SY5Y cells and 2) mouse primary hippocampal neurons. P4-CM increased synaptic marker expression and promoted neuronal survival against H2O2. These effects were attenuated by Y1036 (an inhibitor of neurotrophin receptor [tropomysin-related kinase] signaling), as well as tropomysin-related kinase B-IgG (a more specific inhibitor to block BDNF signaling), which pointed to BDNF as the key protective component within P4-CM. These findings suggest that P4 may exert its maximal protection by triggering a glia-neuron cross talk, in which P4 promotes mature BDNF release from glia to enhance synaptogenesis as well as survival of neurons. This recognition of the importance of glia in mediating P4's neuroprotection may also inform the design of effective therapeutic methods for treating diseases wherein neuronal death and/or synaptic deficits are noted.
Collapse
Affiliation(s)
- Fen Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Trinh Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Xin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Renqi Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Zhenglan Chen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Meharvan Singh
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
22
|
Scheytt S, Riediger N, Braunsdorf S, Sommer C, Üçeyler N. Increased gene expression of growth associated protein-43 in skin of patients with early-stage peripheral neuropathies. J Neurol Sci 2015; 355:131-7. [DOI: 10.1016/j.jns.2015.05.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/03/2015] [Accepted: 05/27/2015] [Indexed: 01/25/2023]
|
23
|
Zhang X, Chen J. The mechanism of astragaloside IV promoting sciatic nerve regeneration. Neural Regen Res 2014; 8:2256-65. [PMID: 25206535 PMCID: PMC4146037 DOI: 10.3969/j.issn.1673-5374.2013.24.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside IV), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. This study investigated whether astragaloside IV could promote the repair of injured sciatic nerve. Denervated sciatic nerve of mice was subjected to anastomosis. The mice were intraperitoneally injected with 10, 5, 2.5 mg/kg astragaloside IV per day for 8 consecutive days. Western blot assay and real-time PCR results demonstrated that growth-associated protein-43 expression was upregulated in mouse spinal cord segments L4–6 after intervention with 10, 5, 2.5 mg/kg astragaloside IV per day in a dose-dependent manner. Luxol fast blue staining and electrophysiological detection suggested that astragaloside IV elevated the number and diameter of myelinated nerve fibers, and simultaneously increased motor nerve conduction velocity and action potential amplitude in the sciatic nerve of mice. These results indicated that astragaloside IV contributed to sciatic nerve regeneration and functional recovery in mice. The mechanism underlying this effect may be associated with the upregulation of growth-associated protein-43 expression.
Collapse
Affiliation(s)
- Xiaohong Zhang
- School of Pharmacutical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
24
|
Taguchi K, Watanabe Y, Tsujimura A, Tatebe H, Miyata S, Tokuda T, Mizuno T, Tanaka M. Differential expression of alpha-synuclein in hippocampal neurons. PLoS One 2014; 9:e89327. [PMID: 24586691 PMCID: PMC3934906 DOI: 10.1371/journal.pone.0089327] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022] Open
Abstract
α-Synuclein is the major pathological component of synucleinopathies including Parkinson's disease and dementia with Lewy bodies. Recent studies have demonstrated that α-synuclein also plays important roles in the release of synaptic vesicles and synaptic membrane recycling in healthy neurons. However, the precise relationship between the pathogenicity and physiological functions of α-synuclein remains to be elucidated. To address this issue, we investigated the subcellular localization of α-synuclein in normal and pathological conditions using primary mouse hippocampal neuronal cultures. While some neurons expressed high levels of α-synuclein in presynaptic boutons and cell bodies, other neurons either did not or only very weakly expressed the protein. These α-synuclein-negative cells were identified as inhibitory neurons by immunostaining with specific antibodies against glutamic acid decarboxylase (GAD), parvalbumin, and somatostatin. In contrast, α-synuclein-positive synapses were colocalized with the excitatory synapse marker vesicular glutamate transporter-1. This expression profile of α-synuclein was conserved in the hippocampus in vivo. In addition, we found that while presynaptic α-synuclein colocalizes with synapsin, a marker of presynaptic vesicles, it is not essential for activity-dependent membrane recycling induced by high potassium treatment. Exogenous supply of preformed fibrils generated by recombinant α-synuclein was shown to promote the formation of Lewy body (LB) -like intracellular aggregates involving endogenous α-synuclein. GAD-positive neurons did not form LB-like aggregates following treatment with preformed fibrils, however, exogenous expression of human α-synuclein allowed intracellular aggregate formation in these cells. These results suggest the presence of a different mechanism for regulation of the expression of α-synuclein between excitatory and inhibitory neurons. Furthermore, α-synuclein expression levels may determine the efficiency of intracellular aggregate formation in different neuronal subtypes.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
| | - Atsushi Tsujimura
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
| | - Harutsugu Tatebe
- Department of Neurology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
| | - Masaki Tanaka
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|