1
|
Sun W, Ma S, Jin X, Ma Y. Combined analysis of mRNA-miRNA from testis tissue in Tibetan sheep with different FecB genotypes. Open Life Sci 2023; 18:20220605. [PMID: 37250847 PMCID: PMC10224625 DOI: 10.1515/biol-2022-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/31/2023] Open
Abstract
Testis size is important for identifying breeding animals with adequate sperm production. The aim of this study was to survey the expression profile of mRNA and miRNA in testis tissue from rams carrying different FecB genotypes, including the wild-type and heterozygous genotypes in Tibetan sheep. Comparative transcriptome profiles for ovine testes were established for wild-type and heterozygote Tibetan sheep by next-generation sequencing. RNA-seq results identified 3,910 (2,034 up- and 1,876 downregulated) differentially expressed (DE) genes and 243 (158 up- and 85 downregulated) DE microRNAs (miRNAs) in wild-type vs heterozygote sheep, respectively. Combined analysis of mRNA-seq and miRNA-seq revealed that 20 miRNAs interacted with 48 true DE target genes in wild-type testes compared to heterozygous genotype testes. These results provide evidence for a functional series of genes operating in Tibetan sheep testis. In addition, quantitative real-time PCR analysis showed that the expression trends of randomly selected DE genes in testis tissues from different genotypes were consistent with high-throughput sequencing results.
Collapse
Affiliation(s)
- Wu Sun
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Shike Ma
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Xiayang Jin
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Yuhong Ma
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| |
Collapse
|
2
|
Xing K, Gao M, Li X, Feng Y, Ge Y, Qi X, Wang X, Ni H, Guo Y, Sheng X. An integrated analysis of testis miRNA and mRNA transcriptome reveals important functional miRNA-targets in reproduction traits of roosters. Reprod Biol 2020; 20:433-440. [PMID: 32561231 DOI: 10.1016/j.repbio.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/14/2020] [Indexed: 01/19/2023]
Abstract
The reproductive efficiency of roosters is an important trait in poultry production; however, the molecular mechanisms underlying this trait are not clearly understood. Here, we compared the mRNA and microRNA (miRNA) transcriptomes of testis from roosters with divergent sperm motility. A total of 302 differentially expressed genes (DEGs), including 182 upregulated genes and 120 downregulated genes, were identified in high sperm motility groups compared with low sperm motility groups. A subset of these DEGs related to steroid hormone biosynthesis and thus could be important for spermatogenesis. Additionally, we detected 13 differentially expressed miRNAs (DEMs) between two groups, and target gene prediction indicated seven of these could be associated with spermatogenesis. Based on a comprehensive analysis of these transcriptomes, miRNA-mRNA interaction networks were constructed. Six DEGs were predicted to be regulated by DEMs. Subsequently, we validated the negative regulation of family with sequence similarity 84, member A (FAM84A) by miR-215 using a dual-luciferase reporter system. These results provide new insights into the molecular profile of the testis and identify genes that may determine sperm motility in chickens.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengjin Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuhang Feng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yu Ge
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
3
|
Zhu H, Zheng L, Wang L, Tang F, Arisha AH, Zhou H, Hua J. p53 inhibits the proliferation of male germline stem cells from dairy goat cultured on poly-L-lysine. Reprod Domest Anim 2020; 55:405-417. [PMID: 31985843 DOI: 10.1111/rda.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Male germline stem cells (mGSCs) can transmit genetic materials to the next generation and dedifferentiate into pluripotent stem cells. However, in livestock, mGSC lines are difficult to establish, because of the factors that affect their isolation and culture. The extracellular matrix serves as a substrate for attachment and affects the fate of these stem cells. Poly-L-lysine (PL), an extracellular matrix of choice, inhibits and/or kills cancer cells, and promotes the attachment of stem cells in culture. However, how it affects the characteristics and potentials of these stem cells in culture needs to be elucidated. Here, we isolated, enriched and cultured dairy goat mGSCs on five types of extracellular matrices. To explore the best extracellular matrix to use for culturing them, the characteristics and proliferation ability of the cells were determined. Results showed that the cells shared several characteristics with previously reported mGSCs, including the poor effect of PL on their proliferative and colony-forming abilities. Further examination showed upregulation of p53 expression in these cells, which could be inhibiting their proliferation. When a p53 inhibitor was included in the culture medium, it was confirmed to be responsible for the inhibition of proliferation in mGSCs. Optimal concentration of the inhibitor in the culture of these cells was 5 µM. Furthermore, addition of the p53 inhibitor increased the expression of the markers of self-renewal and cell cycle in goat mGSCs. In summary, suppressing p53 is beneficial for the proliferation of dairy goat mGSCs, cultured on PL.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hongchao Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
5
|
Zhu H, Zheng L, Wang L, Tang F, Hua J. MiR-302 enhances the viability and stemness of male germline stem cells. Reprod Domest Anim 2018; 53:1580-1588. [PMID: 30070400 DOI: 10.1111/rda.13266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
MicroRNAs were reported to be able to regulate mGSCs' self-renewal through post-transcriptional inhibition of gene expression. miR-302 worked as one important microRNA family existed mainly in human ESCs, and its role in mGSCs has not been reported yet. To elucidate the role of miR-302 in dairy goat mGSCs, the expression profile of miR-302 was explored through qPCR and FISH. Furthermore, to detect the function of miR-302, the expression vector containing miR-302 was transfected into mGSCs, and then, the cell cycle, the cell apoptosis and the genes associated with mGSCs' self-renewal and differentiation were examined. The results showed that miR-302 expressed in testis moderately and located on the basement of seminiferous tubes which shared the same location as mGSCs. Transfection of the vector containing miR-302 fragment into the immortalized mGSCs obviously enhanced the cell proliferation ability and the attachment ability, also, promoted the expression level of CD49f and OCT4. Also, miR-302 reduced the cell apoptosis and downregulated the expression of P21. miR-302 sustained mGSCs' proliferation in vitro.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Double sex and mab-3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells. J Cell Physiol 2017; 233:2537-2548. [DOI: 10.1002/jcp.26129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
|
7
|
Weng B, Ran M, Chen B, Wu M, Peng F, Dong L, He C, Zhang S, Li Z. Systematic identification and characterization of miRNAs and piRNAs from porcine testes. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0573-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Li PZ, Yan GY, Han L, Pang J, Zhong BS, Zhang GM, Wang F, Zhang YL. Overexpression of STRA8, BOULE, and DAZL Genes Promotes Goat Bone Marrow–Derived Mesenchymal Stem Cells In Vitro Transdifferentiation Toward Putative Male Germ Cells. Reprod Sci 2016; 24:300-312. [DOI: 10.1177/1933719116654990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pei-zhen Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guang-yao Yan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bu-shuai Zhong
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guo-min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yan-li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Jasinski-Bergner S, Mandelboim O, Seliger B. The role of microRNAs in the control of innate immune response in cancer. J Natl Cancer Inst 2014; 106:dju257. [PMID: 25217579 DOI: 10.1093/jnci/dju257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ligands for receptors of natural killer (NK) cells and CD8(+) cytotoxic T lymphocytes (CTL), such as the inhibitory nonclassical HLA-G, the activating stress-induced major histocompatibility complex class I-related antigens MICA and MICB, and/or the UL16-binding proteins (ULBPs), are often aberrantly expressed upon viral infection and neoplastic transformation, thereby preventing virus-infected or malignant-transformed cells from elimination by immune effector cells. Recently, it has been shown that ligands of both NK and CD8(+) T cells are regulated by a number of cellular and/or viral microRNAs (miRs). These miRs are involved in shaping the antiviral and/or antitumoral immune responses as well as neoplastic growth properties. This review summarizes the expression pattern and function of miRs directed against selected NK and T cell receptor ligands, their putative role in shaping immune surveillance and tumorigenicity, and their clinical relevance. In addition, the potential role of RNA-binding proteins in the post-transcriptional gene regulation of these ligands will be discussed.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM)
| | - Ofer Mandelboim
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM)
| | - Barbara Seliger
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM).
| |
Collapse
|