1
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
2
|
Zhang XX, Wu XS, Mi SH, Fang SJ, Liu S, Xin Y, Zhao QM. Neuregulin-1 promotes mitochondrial biogenesis, attenuates mitochondrial dysfunction, and prevents hypoxia/reoxygenation injury in neonatal cardiomyocytes. Cell Biochem Funct 2020; 38:549-557. [PMID: 32037595 DOI: 10.1002/cbf.3503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Neuregulin-1 (NRG-1)/erythroblastic leukaemia viral oncogene homologues (ErbB) pathway activation plays a crucial role in regulating the adaptation of the adult heart to physiological and pathological stress. In the present study, we investigate the effect of recombined human NRG-1 (rhNRG-1) on mitochondrial biogenesis, mitochondrial function, and cell survival in neonatal rat cardiac myocytes (NRCMs) exposed to hypoxia/reoxygenation (H/R). The results of this study showed that, in the H/R-exposed NRCMs, mitochondrial biogenesis was impaired, as manifested by the decrease of the expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and mitochondrial membrane proteins, the inner membrane (Tim23), mitofusin 1 (Mfn1), and mitofusin 2 (Mfn2). RhNRG-1 pretreatment effectively restored the expression of PGC-1α and these membrane proteins, upregulated the expression of the anti-apoptosis proteins Bcl-2 and Bcl-xL, preserved the mitochondrial membrane potential, and attenuated H/R-induced cell apoptosis. Blocking PGC-1 expression with siRNA abolished the beneficial role of rhNRG-1 on mitochondrial function and cell survival. The results of the present study strongly suggest that NRG-1/ErbB activation enhances the adaption of cardiomyocytes to H/R injury via promoted mitochondrial biogenesis and improved mitochondrial homeostasis. SIGNIFICANCE OF THE STUDY: The results of this research revealed for the first time the relationship between neuregulin-1 (NRG-1)/erythroblastic leukaemia viral oncogene homologues (ErbB) activation and mitochondrial biogenesis in neonatal cardiomyocytes and verified the significance of this promoted mitochondrial biogenesis in attenuating hypoxia/reoxygenation injury. This finding may open a new field to further understand the biological role of NRG-1/ErbB signalling pathway in cardiomyocyte.
Collapse
Affiliation(s)
- Xiao-Xia Zhang
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| | - Xue-Si Wu
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| | - Shu-Hua Mi
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| | - Shan-Juan Fang
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, China
| | - Sa Liu
- Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, The Capital Medical University, Beijing, China
| | - Yi Xin
- Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, The Capital Medical University, Beijing, China
| | - Quan-Ming Zhao
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6595437. [PMID: 31317035 PMCID: PMC6601481 DOI: 10.1155/2019/6595437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is an essential mechanism in myocardial fibrosis (MF). Tongxinluo (TXL) has been confirmed to protect the endothelium against reperfusion injury after acute myocardial infarction (AMI). However, whether TXL can inhibit MF after AMI via inhibiting EndMT remained unknown. This study aims to identify the role of EndMT in MF after AMI as well as the protective effects and underlying mechanisms of TXL on MF. The AMI model was established in rats by ligating left anterior descending coronary artery. Then, rats were administered with high- (0.8 g·kg−1·d−1), mid- (0.4 g·kg−1·d−1), and low- (0.2 g·kg−1·d−1) dose Tongxinluo and benazepril for 4 weeks, respectively. Cardiac function, infarct size, MF, and related indicators of EndMT were measured. In vitro, human cardiac microvascular endothelial cells (HCMECs) were pretreated with TXL for 4 h and then incubated in hypoxia conditions for 3 days to induce EndMT. Under this hypoxic condition, neuregulin-1 (NRG-1) siRNA were further applied to silence NRG-1 expression. Immunofluorescence microscopy was used to assess expression of endothelial marker of vWF and fibrotic marker of Vimentin. Related factors of EndMT were determined by Western blot analysis. TXL treatment significantly improved cardiac function, ameliorated MF, reduced collagen of fibrosis area (types I and III collagen) and limited excessive extracellular matrix deposition (mmp2 and mmp9). In addition, TXL inhibited EndMT in cardiac tissue and hypoxia-induced HCMECs. In hypoxia-induced HCMECs, TXL increased the expression of endothelial markers, whereas decreasing the expression of fibrotic markers, partially through enhanced expressions of NRG-1, phosphorylation of ErbB2, ErbB4, AKT, and downregulated expressions of hypoxia inducible factor-1a and transcription factor snail. After NRG-1 knockdown, the protective effect of TXL on HCMEC was partially abolished. In conclusion, TXL attenuates MF after AMI by inhibiting EndMT and through activating the NRG-1/ErbB- PI3K/AKT signalling cascade.
Collapse
|
4
|
Wang F, Wang H, Liu X, Yu H, Zuo B, Song Z, Wang N, Huang W, Wang G. Pharmacological postconditioning with Neuregulin-1 mimics the cardioprotective effects of ischaemic postconditioning via ErbB4-dependent activation of reperfusion injury salvage kinase pathway. Mol Med 2018; 24:39. [PMID: 30134819 PMCID: PMC6069706 DOI: 10.1186/s10020-018-0040-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background The protective effect of Neuregulin-1 (NRG-1) on heart failure is well established. In this study, we assessed whether NRG-1 could protect the heart by mimicking the cardioprotective effects of ischaemic postconditioning (IP). Methods We used a myocardial reperfusion injury rat model in vivo to compare the cardioprotective effects of NRG-1(3 μg/kg, iv. at the onset of reperfusion) and IP. In Langendorff isolated heart perfusion experiments, we used the erythroblastic leukaemia viral oncogene homolog 4 (ErbB4) inhibitor AG1478, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and a mitogen-activated protein/extracellular signal regulated kinase (MEK) inhibitor PD98059 to clarify whether the protective effects of NRG-1and IP depend on the NRG-1/ErbB4 signals and the reperfusion injury salvage kinase (RISK) pathway. Infarct size was detected by Evans blue and TTC. Apoptosis was detected by TUNEL assays. The expression of NRG-1/ErbB4 and downstream ERK1/2, AKT, AMPK and p70s6K were detected by western blotting. Hematoxylin/eosin (H&E) staining was used for histological analysis. Results We found that NRG-1 and IP had similar effects on reducing myocardial infarct size and apoptosis in vivo. NRG-1 heart protein levels were upregulated in the IP group. Phosphorylation of AKT, ERK1/2 and ErbB4 were also increased in both the IP and NRG-1 groups. Furthermore, in Langendorff analyses, the ErbB4 inhibitor AG1478 suppressed the phosphorylation of ErbB4 and the RISK pathway and aggravated myocardial edema and fiber fracture, thereby inhibited the cardioprotective effects in both the IP and NRG-1 groups. For assessment of downstream signals, the PI3K inhibitor LY294002 and the MEK inhibitor PD98059 suppressed the phosphorylation of AKT and ERK1/2 respectively and abolished the cardioprotective effects induced by IP and NRG-1. Conclusion In conclusion, both IP and NRG-1 could reduce infarct size and apoptosis through ErbB4-dependent activation of the RISK pathway in the same model; these results indicated the therapeutic potential of NRG-1 as a pharmacological postconditioning agent against myocardial reperfusion injury.
Collapse
Affiliation(s)
- Fuhua Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Huan Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Xuejing Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Bo Zuo
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Zhu Song
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Ning Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|