1
|
Chen Z, Xu L, Lin S, Huang H, Long Q, Liu J. GdX inhibits the occurrence and progression of breast cancer by negatively modulating the activity of STAT3. Cancer Biol Ther 2024; 25:2420383. [PMID: 39487760 PMCID: PMC11540090 DOI: 10.1080/15384047.2024.2420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
AIM To elucidate the biological functionality and regulatory mechanisms of GdX in breast cancer (BC). METHODS The examination of GdX expression in human BC tissues and cell lines was conducted through immunohistochemical (IHC) and Western blot. Cell proliferation capacity was assessed via the CCK-8 and colony formation assay, while cell migration was determined through the wound healing assay. The expression levels of BCL-XL, Cyclin D1, and C-myc gene were quantified using RT-qPCR and Western blot. In vivo tumor growth was evaluated in nude mice xenografted with MDA-MB-231 cells overexpressing GdX, and a mouse model with GdX-deficient BC was established to observe the impact of GdX on BC formation and metastasis. Dual-luciferase reporter assay and immunofluorescence were employed to confirm the interaction between GdX and STAT3. Western blot was employed to validate the influence of GdX overexpression on the phosphorylation process of STAT3. RESULTS GdX exhibited low expression in the cancer tissues of BC patients and cell lines. MDA-MB-231 and MCF-7 cells overexpressing GdX displayed a notable reduction in proliferation and diminished migratory capabilities, accompanied by downregulated mRNA and protein expression of BCL-XL, Cyclin D1, and C-myc. In the xenograft mouse model, heightened GdX expression correlated with a decelerated in vivo tumor growth. Furthermore, in mice deteleing GdX, both the quantity and weight of tumors increased, along with evident pulmonary metastasis. Mechanistically, STAT3 emerged as a downstream target gene of GdX. CONCLUSIONS GdX exerts its inhibitory effects on the initiation and progression of BC by negatively modulating the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shibin Lin
- Department of Ultrasound, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Hongjun Huang
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qing Long
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Liu T, Li X, Pang M, Wang L, Li Y, Sun X. Machine learning-based endoplasmic reticulum-related diagnostic biomarker and immune microenvironment landscape for osteoarthritis. Aging (Albany NY) 2024; 16:4563-4578. [PMID: 38428406 PMCID: PMC10968715 DOI: 10.18632/aging.205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disease worldwide. Further improving the current limited understanding of osteoarthritis has positive clinical value. METHODS OA samples were collected from GEO database and endoplasmic reticulum related genes (ERRGs) were identified. The WGCNA network was further built to identify the crucial gene module. Based on the expression profiles of characteristic ERRGs, LASSO algorithm was used to select key factors according to the minimum λ value. Random forest (RF) algorithm was used to calculate the importance of ERRGs. Subsequently, overlapping genes based on LASSO and RF algorithms were identified as ERRGs-related diagnostic biomarkers. In addition, OA specimens were also collected and performed qRT-PCR quantitative analysis of selected ERRGs. RESULTS We identified four ERRGs associated with OA risk assessment through machine learning methods, and verified the abnormal expressions of these screened markers in OA patients through in vitro experiments. The influence of selected markers on OA immune infiltration was also evaluated. CONCLUSIONS Our results provide new evidence for the role of ER stress in the OA progression, as well as new markers and potential intervention targets for OA.
Collapse
Affiliation(s)
- Tingting Liu
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaomao Li
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223023, China
| | - Mu Pang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, Guangdong 518000, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ye Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
3
|
Seda M, Crespo B, Corcelli M, Osborn DP, Jenkins D. A CRISPR/Cas9-generated mutation in the zebrafish orthologue of PPP2R3B causes idiopathic scoliosis. Sci Rep 2023; 13:6783. [PMID: 37100808 PMCID: PMC10133272 DOI: 10.1038/s41598-023-33589-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Idiopathic scoliosis (IS) is the deformation and/or abnormal curvature of the spine that develops progressively after birth. It is a very common condition, affecting approximately 4% of the general population, yet the genetic and mechanistic causes of IS are poorly understood. Here, we focus on PPP2R3B, which encodes a protein phosphatase 2A regulatory subunit. We found that PPP2R3B is expressed at sites of chondrogenesis within human foetuses, including the vertebrae. We also demonstrated prominent expression in myotome and muscle fibres in human foetuses, and zebrafish embryos and adolescents. As there is no rodent orthologue of PPP2R3B, we used CRIPSR/Cas9-mediated gene-editing to generate a series of frameshift mutations in zebrafish ppp2r3b. Adolescent zebrafish that were homozygous for this mutation exhibited a fully penetrant kyphoscoliosis phenotype which became progressively worse over time, mirroring IS in humans. These defects were associated with reduced mineralisation of vertebrae, resembling osteoporosis. Electron microscopy demonstrated abnormal mitochondria adjacent to muscle fibres. In summary, we report a novel zebrafish model of IS and reduced bone mineral density. In future, it will be necessary to delineate the aetiology of these defects in relation to bone, muscle, neuronal and ependymal cilia function.
Collapse
Affiliation(s)
- Marian Seda
- Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Berta Crespo
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Michelangelo Corcelli
- Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Daniel P Osborn
- Genetics Sections, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, WC1N 1EH, UK.
| |
Collapse
|
4
|
FAM20C plays a critical role in the development of mouse vertebra. Spine J 2022; 22:337-348. [PMID: 34343663 DOI: 10.1016/j.spinee.2021.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Family with sequence similarity 20-member C (FAM20C) is a protein kinase that is responsible for the phosphorylation of many secretory proteins; however, its roles in spine or vertebra development have not be studied. PURPOSE The aim of this investigation is to analyze the roles of FAM20C in vertebra development. STUDY DESIGN/SETTING A mouse study of the Fam20c gene using conditional knockout to assess the effects of its inactivation on vertebra development. METHODS By breeding Sox2-Cre mice with Fam20cflox/flox mice, Sox2-Cre;Fam20cflox/flox mice (abbreviated as cKO mice) are created. X-ray radiography, resin-casted scanning electron microscopy, Hematoxylin and Eosin staining, safranin O staining, Goldner's Masson trichrome staining, Von Kossa staining, tartrate-resistant alkaline phosphatase staining, immunohistochemistry staining, Western Immunoblotting and real-time PCR were employed to characterize the vertebrae of cKO mice compared to the normal control mice. RESULTS Inactivation of Fam20c in mice results in remarkable spine deformity, severe morphology and mineralization defects, altered levels of osteoblast differentiation markers, reduction of activity of the Wnt/β-catenin signaling pathway and reduced level of osteoclastogenesis in the vertebrae. CONCLUSIONS FAM20C plays an essential role in vertebral development; it may regulate vertebral formation through the Wnt/β-catenin signaling pathway. CLINICAL SIGNIFICANCE Mutations in the human FAM20C gene are associated with Raine syndrome. The findings of this study provide valuable clues for the clinical management of Raine syndrome regarding spine manifestations in patients.
Collapse
|
5
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
6
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
7
|
Zhang H, Zhao Y, Yao Q, Ye Z, Mañas A, Xiang J. Ubl4A is critical for mitochondrial fusion process under nutrient deprivation stress. PLoS One 2020; 15:e0242700. [PMID: 33211772 PMCID: PMC7676689 DOI: 10.1371/journal.pone.0242700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/08/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial fusion and fission are dynamic processes regulated by the cellular microenvironment. Under nutrient starvation conditions, mitochondrial fusion is strengthened for energy conservation. We have previously shown that newborns of Ubl4A-deficient mice were more sensitive to starvation stress with a higher rate of mortality than their wild-type littermates. Ubl4A binds with the actin-related protein Arp2/3 complex to synergize the actin branching process. Here, we showed that deficiency in Ubl4A resulted in mitochondrial fragmentation and apoptosis. A defect in the fusion process was the main cause of the mitochondrial fragmentation and resulted from a shortage of primed Arp2/3 complex pool around the mitochondria in the Ubl4A-deficient cells compared to the wild-type cells. As a result, the mitochondrial fusion process was not undertaken quickly enough to sustain starvation stress-induced cell death. Consequently, fragmented mitochondria lost their membrane integrity and ROS was accumulated to trigger caspase 9-dependent apoptosis before autophagic rescue. Furthermore, the wild-type Ubl4A, but not the Arp2/3-binding deficient mutant, could rescue the starvation-induced mitochondrial fragmentation phenotype. These results suggest that Ubl4A promotes the mitochondrial fusion process via Arp2/3 complex during the initial response to nutrient deprivation for cell survival.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Yu Zhao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Qi Yao
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Zijing Ye
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Adriana Mañas
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Jialing Xiang
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
8
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
9
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
10
|
Fu Y, Liu S, Wang Y, Ren F, Fan X, Liang J, Liu C, Li J, Ju Y, Chang Z. GdX/UBL4A‐knockout mice resist collagen‐induced arthritis by balancing the population of T
h
1/T
h
17 and regulatory T cells. FASEB J 2019; 33:8375-8385. [DOI: 10.1096/fj.201802217rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanxia Fu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
- Tsinghua UniversityPeking University Joint Center for Life Sciences Beijing China
| | - Sihan Liu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Yinyin Wang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Fangli Ren
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Xuanzi Fan
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Jiao Liang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Chunxiao Liu
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| | - Jun Li
- Institute of ImmunologyPLAThe Third Military Medical University Chongqing China
| | - Yanfang Ju
- Department of GastroenterologyPLA General Hospital Beijing China
| | - Zhijie Chang
- State Key Laboratory of Membrane BiologySchool of MedicineTsinghua University Beijing China
| |
Collapse
|
11
|
Liu C, Zhou Y, Li M, Wang Y, Yang L, Yang S, Feng Y, Wang Y, Wang Y, Ren F, Li J, Dong Z, Chin YE, Fu X, Wu L, Chang Z. Absence of GdX/UBL4A Protects against Inflammatory Diseases by Regulating NF-кB Signaling in Macrophages and Dendritic Cells. Am J Cancer Res 2019; 9:1369-1384. [PMID: 30867837 PMCID: PMC6401509 DOI: 10.7150/thno.32451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) activation is critical for innate immune responses. However, cellular-intrinsic regulation of NF-κB activity during inflammatory diseases remains incompletely understood. Ubiquitin-like protein 4A (UBL4A, GdX) is a small adaptor protein involved in protein folding, biogenesis and transcription. Yet, whether GdX has a role during innate immune response is largely unknown. Methods: To investigate the involvement of GdX in innate immunity, we challenged GdX-deficient mice with lipopolysaccharides (LPS). To investigate the underlying mechanism, we performed RNA sequencing, real-time PCR, ELISA, luciferase reporter assay, immunoprecipitation and immunoblot analyses, flow cytometry, and structure analyses. To investigate whether GdX functions in inflammatory bowel disease, we generated dendritic cell (DC), macrophage (Mφ), epithelial-cell specific GdX-deficient mice and induced colitis with dextran sulfate sodium. Results: GdX enhances DC and Mφ-mediated innate immune defenses by positively regulating NF-κB signaling. GdX-deficient mice were resistant to LPS-induced endotoxin shock and DSS-induced colitis. DC- or Mφ- specific GdX-deficient mice displayed alleviated mucosal inflammation. The production of pro-inflammatory cytokines by GdX-deficient DCs and Mφ was reduced. Mechanistically, we found that tyrosine-protein phosphatase non-receptor type 2 (PTPN2, TC45) and protein phosphatase 2A (PP2A) form a complex with RelA (p65) to mediate its dephosphorylation whereas GdX interrupts the TC45/PP2A/p65 complex formation and restrict p65 dephosphorylation by trapping TC45. Conclusion: Our study provides a mechanism by which NF-κB signaling is positively regulated by an adaptor protein GdX in DC or Mφ to maintain the innate immune response. Targeting GdX could be a strategy to reduce over-activated immune response in inflammatory diseases.
Collapse
|
12
|
Benarroch R, Austin JM, Ahmed F, Isaacson RL. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 114:265-313. [PMID: 30635083 PMCID: PMC7102839 DOI: 10.1016/bs.apcsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SGTA is a co-chaperone that, in collaboration with the complex of BAG6/UBL4A/TRC35, facilitates the biogenesis and quality control of hydrophobic proteins, protecting them from the aqueous cytosolic environment. This work includes targeting tail-anchored proteins to their resident membranes, sorting of membrane and secretory proteins that mislocalize to the cytoplasm and endoplasmic reticulum-associated degradation of misfolded proteins. Since these functions are all vital for the cell's continued proteostasis, their disruption poses a threat to the cell, with a particular risk of protein aggregation, a phenomenon that underpins many diseases. Although the specific disease implications of machinery involved in quality control of hydrophobic substrates are poorly understood, here we summarize much of the available information on this topic.
Collapse
Affiliation(s)
- Rashi Benarroch
- Department of Chemistry, King's College London, London, United Kingdom
| | - Jennifer M Austin
- Department of Chemistry, King's College London, London, United Kingdom
| | - Fahmeda Ahmed
- Department of Chemistry, King's College London, London, United Kingdom
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|