1
|
Teraiya M, Krokhin O, Chen VC, Perreault H. Cytoplasmic Shotgun Proteomic Points to Key Proteins and Pathways in Temozolomide-Resistant Glioblastoma Multiforme. J Proteome Res 2024; 23:465-482. [PMID: 38147655 DOI: 10.1021/acs.jproteome.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
| | - Oleg Krokhin
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
- Manitoba Centre for Proteomics and Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Vincent C Chen
- Chemistry Department, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
| |
Collapse
|
2
|
Teraiya M, Perreault H, Chen VC. An overview of glioblastoma multiforme and temozolomide resistance: can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front Oncol 2023; 13:1166207. [PMID: 37182181 PMCID: PMC10169742 DOI: 10.3389/fonc.2023.1166207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality. Despite intense efforts to understand the mechanisms of therapeutic resistance, there is currently a poor understanding of the molecular processes of drug resistance. For TMZ, several mechanisms linked to therapeutic resistance have been proposed. In the past decade, significant progress in the field of mass spectrometry-based proteomics has been made. This review article discusses the molecular drivers of GBM, within the context of TMZ resistance with a particular emphasis on the potential benefits and insights of using global proteomic techniques.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Vincent C. Chen
- Chemistry Department, Brandon University, Brandon, MB, Canada
| |
Collapse
|
3
|
Vitkin E, Singh A, Wise J, Ben-Elazar S, Yakhini Z, Golberg A. Nondestructive protein sampling with electroporation facilitates profiling of spatial differential protein expression in breast tumors in vivo. Sci Rep 2022; 12:15835. [PMID: 36151122 PMCID: PMC9508265 DOI: 10.1038/s41598-022-19984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Excision tissue biopsy, while central to cancer treatment and precision medicine, presents risks to the patient and does not provide a sufficiently broad and faithful representation of the heterogeneity of solid tumors. Here we introduce e-biopsy—a novel concept for molecular profiling of solid tumors using molecular sampling with electroporation. As e-biopsy provides access to the molecular composition of a solid tumor by permeabilization of the cell membrane, it facilitates tumor diagnostics without tissue resection. Furthermore, thanks to its non tissue destructive characteristics, e-biopsy enables probing the solid tumor multiple times in several distinct locations in the same procedure, thereby enabling the spatial profiling of tumor molecular heterogeneity.We demonstrate e-biopsy in vivo, using the 4T1 breast cancer model in mice to assess its performance, as well as the inferred spatial differential protein expression. In particular, we show that proteomic profiles obtained via e-biopsy in vivo distinguish the tumors from healthy breast tissue and reflect spatial tumor differential protein expression. E-biopsy provides a completely new molecular sampling modality for solid tumors molecular cartography, providing information that potentially enables more rapid and sensitive detection at lesser risk, as well as more precise personalized medicine.
Collapse
Affiliation(s)
- Edward Vitkin
- School of Computer Science, Reichman University (IDC Herzliya), Herzliya, Israel
| | - Amrita Singh
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Julia Wise
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shay Ben-Elazar
- School of Computer Science, Reichman University (IDC Herzliya), Herzliya, Israel
| | - Zohar Yakhini
- School of Computer Science, Reichman University (IDC Herzliya), Herzliya, Israel. .,Computer Science Faculty, Technion, Haifa, Israel.
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Lin R, Xu Y, Xie S, Zhang Y, Wang H, Yi GZ, Huang G, Ni B, Song H, Wang Z, Qi ST, Liu Y. Recycling of SLC38A1 to the plasma membrane by DSCR3 promotes acquired temozolomide resistance in glioblastoma. J Neurooncol 2022; 157:15-26. [PMID: 35187626 DOI: 10.1007/s11060-022-03964-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.
Collapse
Affiliation(s)
- Rui Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Sidi Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxiao Zhang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bowen Ni
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haimin Song
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ziyu Wang
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Song-Tao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 2021; 1876:188616. [PMID: 34419533 DOI: 10.1016/j.bbcan.2021.188616] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023]
Abstract
Temozolomide (TMZ) is a first-choice alkylating agent inducted as a gold standard therapy for glioblastoma multiforme (GBM) and astrocytoma. A majority of patients do not respond to TMZ during the course of their treatment. Activation of DNA repair pathways is the principal mechanism for this phenomenon that detaches TMZ-induced O-6-methylguanine adducts and restores genomic integrity. Current understanding in the domain of oncology adds several other novel mechanisms of resistance such as the involvement of miRNAs, drug efflux transporters, gap junction's activity, the advent of glioma stem cells as well as upregulation of cell survival autophagy. This review describes a multifaceted account of different mechanisms responsible for the intrinsic and acquired TMZ-resistance. Here, we summarize different strategies that intensify the TMZ effect such as MGMT inhibition, development of novel imidazotetrazine analog, and combination therapy; with an aim to incorporate a successful treatment and increased overall survival in GBM patients.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
6
|
Jia J, Ouyang Z, Wang M, Ma W, Liu M, Zhang M, Yu M. MicroRNA-361-5p slows down gliomas development through regulating UBR5 to elevate ATMIN protein expression. Cell Death Dis 2021; 12:746. [PMID: 34321465 PMCID: PMC8319180 DOI: 10.1038/s41419-021-04010-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
MicroRNA (miR)-361-5p has been studied to suppress gliomas development. Based on that, an insight into the regulatory mechanism of miR-361-5p in gliomas was supplemented from ubiquitin protein ligase E3 component N-recognin 5 (UBR5)-mediated ubiquitination of ataxia-telangiectasia mutated interactor (ATMIN). miR-361-5p, ATMIN, and UBR5 levels were clinically analyzed in gliomas tissues, which were further validated in gliomas cell lines. Loss/gain-of-function method was applied to determine the roles of miR-361-5p and UBR5 in gliomas, as to cell viability, migration, invasion, colony formation ability, and apoptosis in vitro and tumorigenesis in vivo. The relationship between miR-361-5p and UBR5 was verified and the interaction between UBR5 and ATMIN was explored. It was detected that reduced miR-361-5p and ATMIN and enhanced UBR5 levels showed in gliomas. Elevating miR-361-5p was repressive in gliomas progression. UBR5 was directly targeted by miR-361-5p. UBR5 can ubiquitinate ATMIN. miR-361-5p suppressed gliomas by regulating UBR5-mediated ubiquitination of ATMIN. Downregulating UBR5 impeded gliomas tumor growth in vivo. Upregulating miR-361-5p targets UBR5 to promote ATMIN protein expression, thus to recline the malignant phenotype of gliomas cells.
Collapse
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhu Ouyang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|