1
|
Wang H, Li F, Wang Q, Guo X, Chen X, Zou X, Yuan J. Identifying ADME-related gene signature for immune landscape and prognosis in KIRC by single-cell and spatial transcriptome analysis. Sci Rep 2025; 15:1294. [PMID: 39779746 PMCID: PMC11711672 DOI: 10.1038/s41598-024-84018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of kidney cancer. Although multiple therapeutic agents have been proven effective in KIRC, their clinical application has been hindered by a lack of reliable biomarkers. This study focused on the prognostic value and function of drug absorption, distribution, metabolism, and excretion- (ADME-) related genes (ARGs) in KIRC to enhance personalized therapy. The critical role of ARGs in KIRC microenvironment was confirmed by single cell RNA-seq analysis and spatial transcriptome sequencing analysis for the first time. Then, an ADME-related prognostic signature (ARPS) was developed by the bulk RNA-seq analysis. The ARPS, created through Cox regression, LASSO, and stepAIC analyses, identified eight ARGs that stratified patients into high-risk and low-risk groups. High-risk patients had significantly poorer overall survival. Multivariate analysis confirmed the independent predictive ability of ARPS, and an ARPS-based nomogram was constructed for clinical application. Gene ontology and KEGG pathway analyses revealed immune-related functions and pathways enriched in these groups, with low-risk patients showing better responses to immunotherapy. Finally, the expression of ARGs was validated by qRT-PCR and Western blotting experiments. These findings underscore the prognostic significance of ARPS in KIRC and its potential application in guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Feizhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Qiong Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyuan Guo
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinbing Chen
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinrong Zou
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Institute of Chinese Medicine Nephrology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine (Hubei Province Hospital of Traditional Chinese Medicine), Wuhan, 430061, China.
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Tahiliani H, Dhayalan A, Li MC, Hsieh HP, Coumar MS. Aldehyde dehydrogenases as drug targets for cancer: SAR and structural biology aspects for inhibitor design. Bioorg Chem 2025; 154:108019. [PMID: 39689509 DOI: 10.1016/j.bioorg.2024.108019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Aldehydes are organic compounds containing a carbonyl group found exogenously or produced by normal metabolic processes and their accumulation can lead to toxicity if not cleared. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that catalyze the oxidation of such aldehydes and prevent their accumulation. Along with this primary detoxification function, the known 19 human isoforms of ALDHs, which act on different substrates, are also involved in various physiological and developmental processes. Functional alterations of ALDHs via mutations or expression levels cause various disease conditions, including many different cancer types like lung, ovarian, etc. These properties make this family of enzymes an ideal therapeutic and prognostic target for drug development. However, sequence similarities between the ALDH isoforms force the need to design inhibitors for a specific isoform using the differences in the substrate-binding sites of each protein. This has resulted in developing isoform-specific inhibitors, especially for ALDH1A1, ALDH2, and ALDH3A1, which are implicated in various cancers. In this review, we briefly outline the functional roles of the different isoforms of the ALDH family members, their role in cancer and discuss the various selective inhibitors that have been developed for the ALDH1A1 and ALDH3A1 enzymes, along with a detailed examination of the respective structure-activity relationship (SAR) studies available. From the available SAR and structural biology data, insights into the functional groups and interactions necessary to develop selective inhibitors for ALDH1A1 and ALDH3A1 are highlighted, which can act as a guide for developing more potent and selective inhibitors of ALDH isoforms.
Collapse
Affiliation(s)
- Himanshu Tahiliani
- Department of Bioinformatics, School of Life Scicnces, Pondicherry University, Pondicherry 605014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC; Biomedical Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC; Biomedical Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC; Department of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Scicnces, Pondicherry University, Pondicherry 605014, India.
| |
Collapse
|
3
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Song K, Ma C, Maswikiti EP, Gu B, Wang B, Wang N, Jiang P, Chen H. Downregulation of ALDH5A1 suppresses cisplatin resistance in esophageal squamous cell carcinoma by regulating ferroptosis signaling pathways. Mol Carcinog 2024; 63:1892-1906. [PMID: 38923019 DOI: 10.1002/mc.23778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
This study explores the specific role and underlying mechanisms of ALDH5A1 in the chemoresistance of esophageal squamous cell carcinoma (ESCC). The levels of cleaved caspase-3, 4-hydroxynonenal (4-HNE), intracellular Fe2+, and lipid reactive oxygen species (ROS) were evaluated via immunofluorescence. Cell viability and migration were quantified using cell counting kit-8 assays and wound healing assays, respectively. Flow cytometry was utilized to analyze cell apoptosis and ROS production. The concentrations of malondialdehyde (MDA) and reduced glutathione were determined by enzyme-linked immunosorbent assay. Proteome profiling was performed using data-independent acquisition. Additionally, a xenograft mouse model of ESCC was established to investigate the relationship between ALDH5A1 expression and the cisplatin (DDP)-resistance mechanism in vivo. ALDH5A1 is overexpressed in both ESCC patients and ESCC/DDP cells. Silencing of ALDH5A1 significantly enhances the inhibitory effects of DDP treatment on the viability and migration of KYSE30/DDP and KYSE150/DDP cells and promotes apoptosis. Furthermore, it intensifies DDP's suppressive effects on tumor volume and weight in nude mice. Gene ontology biological process analysis has shown that ferroptosis plays a crucial role in both KYSE30/DDP cells and KYSE30/DDP cells transfected with si-ALDH5A1. Our in vitro and in vivo experiments demonstrate that DDP treatment promotes the accumulation of ROS, lipid ROS, MDA, LPO, and intracellular Fe2+ content, increases the levels of proteins that promote ferroptosis (ACSL4 and FTH1), and decreases the expression of anti-ferroptosis proteins (SLC7A11, FTL, and GPX4). Silencing of ALDH5A1 further amplifies the regulatory effects of DDP both in vitro and in vivo. ALDH5A1 potentially acts as an oncogene in ESCC chemoresistance. Silencing of ALDH5A1 can reduce DDP resistance in ESCC through promoting ferroptosis signaling pathways. These findings suggest a promising strategy for the treatment of ESCC in clinical practice.
Collapse
Affiliation(s)
- Kewei Song
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Public Health, Jining No. 1 People's Hospital, Jining, China
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | | | - Baohong Gu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Na Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's Hospital, Jining, China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, China
| |
Collapse
|
5
|
Luo S, Liu Z, Chang H, Cheng X, Qian R, Gao Y, Hou C. Potential value of expression of receptor accessory protein 4 for evaluating the prognosis of lower-grade glioma patients. Aging (Albany NY) 2024; 16:6188-6211. [PMID: 38552216 PMCID: PMC11042925 DOI: 10.18632/aging.205695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND REEP4 is involved in the regulation of the biological process of mitosis. Lower grade glioma (LGG), as a malignant tumor, is accompanied by abnormalities in mitosis, but there have been no reports of REEP4 so far. METHODS We collected transcriptome data, DNA methylation data and the clinical characteristics of thousands of patients with LGG. Various big data analysis methods and molecular biology experiments were employed to reveal the impact of REEP4 on the pathological process of LGG. RESULTS It was found that the expression of REEP4 was significantly elevated and negatively regulated by its methylation site. Therefore, both the high expression of REEP4 and low methylation state of cg16311504 showed that the patients are correlated with lower patient survival rate. In addition, high REEP4 expression participates in the regulation of various cancer-related cellular signaling pathways, such as the cell cycle, MAPK signaling pathway, NOD-like receptor signaling pathway, etc. More importantly, the level of immune cell infiltration significantly increased in the high expression group of REEP4 in the LGG tumor microenvironment and REEP4 has a high positive correlation with PD-L1 and other immune checkpoints. CONCLUSIONS In brief, this study is the first to introduce REEP4 in malignant tumors, which can be used as an independent risk factor that participates in the malignant process of LGG. More importantly, REEP4 has the potential to become a new star in the field of anti-tumor treatment.
Collapse
Affiliation(s)
- Shuping Luo
- Department of Colorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Haigang Chang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People’s Hospital, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450003, Henan, China
| | - Chaofeng Hou
- Department of Colorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Liu Y, Xin Y, Shang X, Tian Z, Xue G. CircSEMA6A upregulates PRRG4 by targeting MiR-520h and recruiting ELAVL1 to affect cell invasion and migration in papillary thyroid carcinoma. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e210541. [PMID: 38394156 PMCID: PMC10948040 DOI: 10.20945/2359-4292-2021-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/07/2022] [Indexed: 02/25/2024]
Abstract
Objective As the most prevalent type of thyroid malignancy, papillary thyroid carcinoma (PTC) accounts for over 80% of all thyroid cancers. Circular RNAs (circRNAs) have been found to regulate multiple cancers, including PTC. Materials and methods Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to analyse RNA and protein levels. Fluorescence in situ hybridization (FISH) was used to detect the distribution of the target genes. Functional experiments and animal experiments were implemented to analyse the biological functions of target genes in vitro and in vivo. Luciferase reporter, RNA pulldown, RNA binding protein immunoprecipitation (RIP) and mRNA stability assays were used to probe the underlying mechanisms. Results CircSEMA6Awas found to be upregulated in PTC tissues and cells, and its circular structure was verified. CircSEMA6A promotes PTC cell migration and invasion. Moreover, circSEMA6A functions as a competing endogenous RNA (ceRNA) to upregulate proline rich and Gla domain 4 (PRRG4) expression by sponging microRNA-520h (miR-520h). CircSEMA6A recruits ELAV1 to stabilize PRRG4 mRNA and drives PTC progression via PRRG4. Conclusion CircSEMA6A upregulates PRRG4 by targeting miR-520h and recruiting ELAVL1 to affect the invasion and migration of PTC cells, offering insight into the molecular mechanisms of PTC.
Collapse
Affiliation(s)
- Yachao Liu
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China,
| | - Yunchao Xin
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| | - Xiaoling Shang
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| | - Zedong Tian
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| | - Gang Xue
- Department of Otolaryngol Head & Neck Surg, the First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei, Peoples R China
| |
Collapse
|
7
|
Pearl PL, Tokatly Latzer I, Lee HHC, Rotenberg A. New Therapeutic Approaches to Inherited Metabolic Pediatric Epilepsies. Neurology 2023; 101:124-133. [PMID: 36878704 PMCID: PMC10382274 DOI: 10.1212/wnl.0000000000207133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Treatment options for inherited metabolic epilepsies are rapidly expanding with advances in molecular biology and the genomic revolution. Traditional dietary and nutrient modification and inhibitors or enhancers of protein and enzyme function, the mainstays of therapy, are undergoing continuous revisions to increase biological activity and reduce toxicity. Enzyme replacement and gene replacement and editing hold promise for genetically targeted treatment and cures. Molecular, imaging, and neurophysiologic biomarkers are emerging as key indicators of disease pathophysiology, severity, and response to therapy.
Collapse
Affiliation(s)
- Phillip L Pearl
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Itay Tokatly Latzer
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Henry H C Lee
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alexander Rotenberg
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Piperi C, Saurty-Seerunghen MS, Levidou G, Sepsa A, Trigka EA, Klonou A, Markouli M, Strepkos D, Spyropoulou A, Kanakoglou DS, Lakiotaki E, Karatrasoglou EA, Boviatsis E, El-Habr EA, Korkolopoulou P. Glioma Cells Expressing High Levels of ALDH5A1 Exhibit Enhanced Migration Transcriptional Signature in Patient Tumors. Neurotherapeutics 2023; 20:881-895. [PMID: 36976494 PMCID: PMC10275844 DOI: 10.1007/s13311-023-01354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
Accumulating data shows that altered metabolic activity contributes to glioma development. Recently, modulation of SSADH (succinic semialdehyde dehydrogenase) expression, implicated in the catabolism of GABA neurotransmitter, was shown to impact glioma cell properties, such as proliferation, self-renewal and tumorigenicity. The purpose of this study was to investigate the clinical significance of SSADH expression in human gliomas. Using public single-cell RNA-sequencing data from glioma surgical resections, we initially grouped cancer cells according to ALDH5A1 (Aldehyde dehydrogenase 5 family member A1) expression, which encodes SSADH. Gene ontology enrichment analysis of genes differentially expressed between cancer cells expressing high or low levels of ALDH5A1, highlighted enrichment in genes implicated in cell morphogenesis and motility. In glioblastoma cell lines, ALDH5A1 knockdown inhibited cell proliferation, induced apoptosis and reduced their migratory potential. This was accompanied by a reduction in the mRNA levels of the adherens junction molecule ADAM-15 and deregulation in the expression of EMT biomarkers, with increased CDH1 and decreased vimentin mRNA levels. Evaluation of SSADH expression in a cohort of 95 gliomas using immunohistochemistry showed that SSADH expression was significantly elevated in cancer tissues compared to normal brain tissues, without any significant correlation with clinicopathological characteristics. In summary, our data show that SSADH is upregulated in glioma tissues irrespective of the histological grade and its expression sustains glioma cell motility.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Mirca S Saurty-Seerunghen
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Paris, France
| | - Georgia Levidou
- Department of Pathology, Medical School, Klinikum Nuremberg, Paracelsus University, Nuremberg, Germany
| | - Athanasia Sepsa
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, Greece
| | - Eleni-Andriana Trigka
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios S Kanakoglou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, Greece.
| | - Eleftheria Lakiotaki
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, Greece
| | - Eleni A Karatrasoglou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, Greece
| | - Efstathios Boviatsis
- Department of Neurosurgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, Sorbonne Université, Neuroscience Paris Seine-IBPS Laboratory, Paris, France
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, Greece.
| |
Collapse
|
9
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Deng L, Xu G, Huang Q. Comprehensive analyses of the microRNA-messenger RNA-transcription factor regulatory network in mouse and human renal fibrosis. Front Genet 2022; 13:925097. [PMID: 36457754 PMCID: PMC9705735 DOI: 10.3389/fgene.2022.925097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 09/19/2023] Open
Abstract
Objective: The aim of this study was to construct a microRNA (miRNA)-messenger RNA (mRNA)-transcription factor (TF) regulatory network and explore underlying molecular mechanisms, effective biomarkers, and drugs in renal fibrosis (RF). Methods: A total of six datasets were downloaded from Gene Expression Omnibus. "Limma" and "DESeq2" packages in R software and GEO2R were applied to identify the differentially expressed miRNAs and mRNAs (DEmiRNAs and DEmRNAs, respectively). The determination and verification of DEmiRNAs and DEmRNAs were performed through the integrated analysis of datasets from five mouse 7 days of unilateral ureteral obstruction datasets and one human chronic kidney disease dataset and the Human Protein Atlas (http://www.proteinatlas.org). Target mRNAs of DEmiRNAs and TFs were predicted by prediction databases and the iRegulon plugin in Cytoscape, respectively. A protein-protein interaction network was constructed using STRING, Cytoscape v3.9.1, and CytoNCA. Functional enrichment analysis was performed by DIANA-miRPath v3.0 and R package "clusterProfiler." A miRNA-mRNA-TF network was established using Cytoscape. Receiver operating characteristic (ROC) curve analysis was used to examine the diagnostic value of the key hub genes. Finally, the Comparative Toxicogenomics Database and Drug-Gene Interaction database were applied to identify potential drugs. Results: Here, 4 DEmiRNAs and 11 hub genes were determined and confirmed in five mouse datasets, of which Bckdha and Vegfa were further verified in one human dataset and HPA, respectively. Moreover, Bckdha and Vegfa were also predicted by miR-125a-3p and miR-199a-5p, respectively, in humans as in mice. The sequences of miR-125a-3p and miR-199a-5p in mice were identical to those in humans. A total of 6 TFs were predicted to regulate Bckdha and Vegfa across mice and humans; then, a miRNA-mRNA-TF regulatory network was built. Subsequently, ROC curve analysis showed that the area under the curve value of Vegfa was 0.825 (p = 0.002). Finally, enalapril was identified to target Vegfa for RF therapy. Conclusion: Pax2, Pax5, Sp1, Sp2, Sp3, and Sp4 together with Bckdha-dependent miR-125a-3p/Vegfa-dependent miR-199a-5p formed a co-regulatory network enabling Bckdha/Vegfa to be tightly controlled in the underlying pathogenesis of RF across mice and humans. Vegfa could act as a potential novel diagnostic marker and might be targeted by enalapril for RF therapy.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Qipeng Huang
- Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| |
Collapse
|
11
|
Zhang C, Quinones A, Le A. Metabolic reservoir cycles in cancer. Semin Cancer Biol 2022; 86:180-188. [PMID: 35390455 PMCID: PMC9530070 DOI: 10.1016/j.semcancer.2022.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023]
Abstract
Cancer cells possess various biological processes to ensure survival and proliferation even under unfavorable conditions such as hypoxia, nutrient deprivation, and oxidative stress. One of the defining hallmarks of cancer cells is their ability to reprogram their metabolism to suit their needs. Building on over a decade of research in the field of cancer metabolism, numerous unique metabolic capabilities are still being discovered in the present day. One recent discovery in the field of cancer metabolism that was hitherto unexpected is the ability of cancer cells to store vital metabolites in forms that can be readily converted to glucose and glutamine for later use. We called these forms "metabolic reservoirs." While many studies have been conducted on storage molecules such as glycogen, triglyceride, and phosphocreatine (PCr), few have explored the concept of "metabolic reservoirs" for cancer as a whole. In this review, we will provide an overview of this concept, the previously known reservoirs including glycogen, triglyceride, and PCr, and the new discoveries made including the newly discovered reservoirs such as N-acetyl-aspartyl-glutamate (NAAG), lactate, and γ- aminobutyric acid (GABA). We will also discuss whether disrupting these reservoir cycles may be a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
12
|
Deng Y, Li X, Jiang W, Tang J. SNRPB promotes cell cycle progression in thyroid carcinoma via inhibiting p53. Open Med (Wars) 2022; 17:1623-1631. [PMID: 36329787 PMCID: PMC9579862 DOI: 10.1515/med-2022-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) accounts for more than 80% of all thyroid carcinoma cases. Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) has been indicated to be carcinogenic in several cancers; however, its function and mechanism in PTC are unclarified. Real time quantitative polymerase chain reaction and western blotting revealed the upregulation of SNRPB and downregulation of tumor protein p53 in PTC tissues compared with the normal tissues. Flow cytometry and western blotting displayed that SNRPB silencing induced cell cycle arrest at G1 phase and suppressed the expression levels of Cyclin family proteins in PTC cells. In vivo experiments suggested that SNRPB silencing inhibited PTC tumor growth in mice. Bioinformatics analysis revealed that the expression of SNRPB and cell cycle-associated genes in thyroid carcinoma tissues is positively correlated. Immunofluorescence staining and co-immunoprecipitation demonstrated that SNRPB directly interacted with p53 and suppressed its expression in PTC cells. In conclusion, SNRPB facilitates cell cycle progression in PTC by inhibiting p53 expression.
Collapse
Affiliation(s)
- Yan Deng
- Department of Nuclear Medicine, Wuhan Fifth Hospital, Wuhan, 430050 Hubei, China
| | - Xin Li
- Department of Nuclear Medicine, Wuhan Fifth Hospital, Wuhan, 430050 Hubei, China
| | - Wenlei Jiang
- Department of Emergency, Wuhan Fifth Hospital, Wuhan, 430050 Hubei, China
| | - Jindan Tang
- Department of Nursing, Wuhan Fifth Hospital, No. 122, Xianzheng Street, Hanyang District, Wuhan, 430050 Hubei, China
| |
Collapse
|
13
|
Lee HHC, McGinty GE, Pearl PL, Rotenberg A. Understanding the Molecular Mechanisms of Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD): Towards the Development of SSADH-Targeted Medicine. Int J Mol Sci 2022; 23:2606. [PMID: 35269750 PMCID: PMC8910003 DOI: 10.3390/ijms23052606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.
Collapse
Affiliation(s)
- Henry H. C. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Gabrielle E. McGinty
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
| | - Phillip L. Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
14
|
Circular RNA circ_HN1 facilitates gastric cancer progression through modulation of the miR-302b-3p/ROCK2 axis. Mol Cell Biochem 2020; 476:199-212. [PMID: 32949310 DOI: 10.1007/s11010-020-03897-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is a malignant tumor with high morbidity and mortality in the world. Circular RNA hsa_circHN1_005 (circ_HN1), also termed as hsa_circ_0045602, is reported as an oncogene in GC. However, the molecular mechanism of circ_HN1 in GC development has not been fully explored. Here, we surveyed the regulatory mechanism of circ_HN1 in GC progression. The levels of circ_HN1, miR-302b-3p, and rho-associated coiled-coil containing protein kinase 2 (ROCK2) mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, colony formation, cell cycle progresion, migration, and invasion were determined by using cell counting, flow cytometry, colony formation, or transwell assays. Protein levels were detected with Western blotting. The relationship between circ_HN1 or ROCK2 and miR-302b-3p was verified via dual luciferase reporter or RNA immunoprecipitation (RIP) assays. The role of circ_HN1 in vivo was confirmed by xenograft assay. We observed that circ_HN1 and ROCK2 were upregulated while miR-302b-3p was downregulated in GC tissues and cells. Circ_HN1 silencing slowed tumor growth in vivo and impeded cell proliferation migration, invasion, and facilitated cell apoptosis in GC cells in vitro. Circ_HN1 sponged miR-302b-3p to regulate ROCK2 expression. MiR-302b-3p inhibitor reversed circ_HN1 silencing-mediated influence on the malignant behaviors of GC cells. Furthermore, ROCK2 overexpression restored miR-302b-3p mimic-mediated impacts on cell malignant behaviors in GC cells. In conclusion, circ_HN1 exerted an oncogenic role in GC through upregulating ROCK2 via sponging miR-302b-3p, offering evidence that circ_HN1 is a potential target for GC therapy.
Collapse
|