Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling.
EXPERIMENTAL & MOLECULAR MEDICINE 2022;
54:1549-1562. [PMID:
36131026 PMCID:
PMC9534863 DOI:
10.1038/s12276-022-00849-2]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal canal stenosis (LSCS). The pathomechanisms for LFH have not been fully elucidated. Isobaric tags for relative and absolute quantitation (iTRAQ) technology, proteomics assessments of human ligamentum flavum (LF), and successive assays were performed to explore the effect of clusterin (CLU) upregulation on LFH pathogenesis. LFH samples exhibited higher cell positive rates of the CLU, TGF-β1, α-SMA, ALK5 and p-SMAD3 proteins than non-LFH samples. Mechanical stress and TGF-β1 initiated CLU expression in LF cells. Notably, CLU inhibited the expression of mechanical stress-stimulated and TGF-β1-stimulated COL1A2 and α-SMA. Mechanistic studies showed that CLU inhibited mechanical stress-stimulated and TGF-β1-induced SMAD3 activities through suppression of the phosphorylation of SMAD3 and by inhibiting its nuclear translocation by competitively binding to ALK5. PRKD3 stabilized CLU protein by inhibiting lysosomal distribution and degradation of CLU. CLU attenuated mechanical stress-induced LFH in vivo. In summary, the findings showed that CLU attenuates mechanical stress-induced LFH by modulating the TGF-β1 pathways in vitro and in vivo. These findings imply that CLU is induced by mechanical stress and TGF-β1 and inhibits LF fibrotic responses via negative feedback regulation of the TGF-β1 pathway. These findings indicate that CLU is a potential treatment target for LFH.
The protein clusterin regulates the body’s response to lower back pain induced by mechanical stress and could be a target for treatments. Lower back pain is common and is exacerbated by our upright stance. A major cause of the pain is excessive cell growth (hypertrophy) in the ligaments between vertebrae. This growth narrows the spinal canal and compresses nerves. Using a unique mouse model bred to walk upright, Zhongmin Zhang and Liang Wang at Southern Medical University in Guangzhou, China, and co-workers showed that clusterin, a protein involved in regulation of cell survival, can reduce the hypertrophy caused by mechanical stresses, and could be used in back pain treatments. Clusterin regulates the activity of the growth factor TGF-β1, which plays a role in synthesizing new tissues after injury, but can spur excessive growth.
Collapse