1
|
Rahman MA, Shaikh MH, Gupta RD, Siddika N, Shaikh MS, Zafar MS, Kim B, Hoque Apu E. Advancements in Autophagy Modulation for the Management of Oral Disease: A Focus on Drug Targets and Therapeutics. Biomedicines 2024; 12:2645. [PMID: 39595208 PMCID: PMC11591969 DOI: 10.3390/biomedicines12112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy is an intrinsic breakdown system that recycles organelles and macromolecules, which influences metabolic pathways, differentiation, and thereby cell survival. Oral health is an essential component of integrated well-being, and it is critical for developing therapeutic interventions to understand the molecular mechanisms underlying the maintenance of oral homeostasis. However, because of the complex dynamic relationship between autophagy and oral health, associated treatment modalities have not yet been well elucidated. Determining how autophagy affects oral health at the molecular level may enhance the understanding of prevention and treatment of targeted oral diseases. At the molecular level, hard and soft oral tissues develop because of complex interactions between epithelial and mesenchymal cells. Aging contributes to the progression of various oral disorders including periodontitis, oral cancer, and periapical lesions during aging. Autophagy levels decrease with age, thus indicating a possible association between autophagy and oral disorders with aging. In this review, we critically review various aspects of autophagy and their significance in the context of various oral diseases including oral cancer, periapical lesions, periodontal conditions, and candidiasis. A better understanding of autophagy and its underlying mechanisms can guide us to develop new preventative and therapeutic strategies for the management of oral diseases.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON N6A 4V2, Canada;
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Nazeeba Siddika
- Oral Health Sciences Division, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
| | - Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Muhammad Sohail Zafar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- School of Dentistry, Jordan University, Amman 19328, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
- Centre for International Public Health and Environmental Research, Bangladesh (CIPHER,B), Dhaka 1207, Bangladesh
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
2
|
Jiang Z, Huang H, Luo L, Jiang B. The Role of Autophagy on Osteogenesis of Dental Follicle Cells Under Inflammatory Microenvironment. Oral Dis 2024. [PMID: 39415618 DOI: 10.1111/odi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study investigated the role of autophagy on osteogenesis of DFCs under inflammatory microenvironment during tooth eruption. METHODS DFCs were isolated and identified. Lipopolysaccharide (LPS) was used to construct the inflammatory microenvironment in vitro and in vivo. Cell viability was examined by CCK-8 assay. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining. The gene and protein levels were examined using qRT-PCR and western blot analysis, respectively. We observed the process of tooth eruption after local LPS injection by micro-CT and HE staining. Osteogenesis and autophagy were monitored through qRT-PCR, western blot and histological staining of specific markers. RESULTS LPS at the indicated concentrations did not produce toxic effects on DFCs, and significantly promoted the inflammatory gene expression. LPS inhibited osteogenic differentiation and activated autophagy in DFCs. Blocking autophagy with 3-MA reversed the expression of osteogenic markers in LPS-treated DFCs. Additionally, the eruption of LPS-treated teeth was accelerated and their DFs exhibited an increased expression of TNF-α and Beclin1, and decreased expression of ALP and RUNX2. CONCLUSIONS Autophagy was involved in the suppression of the DFCs osteogenesis in an LPS-induced inflammatory condition, suggesting the pivotal role of autophagy in inflammation-induced premature tooth eruption.
Collapse
Affiliation(s)
- Zhen Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Haiyan Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Linjuan Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Zhou C, Wu Y, Teng Y, Zhang J, Liu J. BRF1 promotes the odontogenic differentiation of dental pulp stem cells in pulpitis by inducing autophagy. Heliyon 2024; 10:e35442. [PMID: 39229529 PMCID: PMC11369479 DOI: 10.1016/j.heliyon.2024.e35442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Objective While post-transcriptional modifications play a pivotal role in the autophagy regulation, studies on dental pulp disease are limited. This study investigated the effect of BRF1 on autophagy in inflamed pulp tissue and human dental pulp stem cells (hDPSCs). Methods Immunohistochemical analysis was used to examine BRF1 expression, autophagy levels, and dentinogenic markers in normal and inflamed pulp. The presence of autophagosomes was observed by transmission electron microscopy. Primary hDPSCs were treated with 1 μg/mL lipopolysaccharide (LPS) for different lengths of time. The expression of BRF1 and autophagy makers was determined by Western blotting. BRF1 knockdown and 3 MA treatment were employed to assess changes in autophagy and dentinogenic differentiation. Double immunofluorescence staining was performed to co-localize BRF1 with LC3B in pulp tissue. Results The expressions of BRF1, LC3, DMP1, and DSP were significantly elevated in the inflamed pulp. LPS enhanced the protein production of IL-6, BRF1, LC3, and Beclin-1 from 6 h to 24 h after the treatment. BRF1 knockdown reduced the ratio of LC3-II/LC3-I and the differentiation ability of hDPSCs, while 3 MA inhibited LPS-mediated dentinogenic differentiation. Double-labeling revealed that BRF1 co-localized with LC3B in inflamed pulp. Conclusion This study demonstrated that BRF1 promoted autophagy activation and odontogenic differentiation in pulpitis.
Collapse
Affiliation(s)
- Caixia Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Now Working in Shenzhen Stomatological Hospital, Shenzhen, 518000, China
| | - Yan Wu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yizhen Teng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jian Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
4
|
Ida-Yonemochi H, Otsu K, Irié T, Ohazama A, Harada H, Ohshima H. Loss of Autophagy Disrupts Stemness of Ameloblast-Lineage Cells in Aging. J Dent Res 2024; 103:156-166. [PMID: 38058147 DOI: 10.1177/00220345231209931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Autophagy is one of the intracellular degradation pathways and maintains cellular homeostasis, regulating the stress response, cell proliferation, and signal transduction. To elucidate the role of autophagy in the maintenance of dental epithelial stem cells and the subsequent enamel formation, we analyzed autophagy-deficient mice in epithelial cells (Atg7f/f;KRT14-Cre mice), focusing on the influence of aging and stress environments. We also performed in vitro cell and organ culture experiments with an autophagy inhibitor. In young Atg7f/f;KRT14-Cre mice, morphological change was not obvious in maxillary incisors, except for the remarkable cell death in the stratum intermedium of the transitional stage. However, under stress conditions of hyperglycemia, the incisor color changed to white in diabetes Atg7f/f;KRT14-Cre mice. Regarding dental epithelial stem cells, the shape of the apical bud region of the incisor became irregular with age, and odontoma was formed in aged Atg7f/f;KRT14-Cre mice. In addition, the shape of apical bud culture cells of Atg7f/f;KRT14-Cre mice became irregular and enlarged atypically, with epigenetic changes during culture, suggesting that autophagy deficiency may induce tumorigenesis in dental epithelial cells. The epigenetic change and upregulation of p21 expression were induced by autophagy inhibition in vivo and in vitro. These findings suggest that autophagy is important for the regulation of stem cell maintenance, proliferation, and differentiation of ameloblast-lineage cells, and an autophagy disorder may induce tumorigenesis in odontogenic epithelial cells.
Collapse
Affiliation(s)
- H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - K Otsu
- Division of Developmental Biology & Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - T Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - A Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata, Japan
| | - H Harada
- Division of Developmental Biology & Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
5
|
Chen J, Li T, Zhou N, He Y, Zhong J, Ma C, Zeng M, Ji J, Huang JD, Ke Y, Sun H. Engineered Salmonella inhibits GPX4 expression and induces ferroptosis to suppress glioma growth in vitro and in vivo. J Neurooncol 2023; 163:607-622. [PMID: 37351767 DOI: 10.1007/s11060-023-04369-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE Glioma is a life-threatening malignancy where conventional therapies are ineffective. Bacterial cancer therapy has shown potential for glioma treatment, in particular, the facultative anaerobe Salmonella has been extensively studied. Meanwhile, ferroptosis is a newly characterized form of cell death. Nevertheless, the role of ferroptosis in Salmonella-induced tumour cell death remains unclear. Therefore, we aim to elucidate whether Salmonella YB1 exerts therapeutic effects via inducing ferroptosis in glioma. METHODS Following Salmonella YB1 infection, mRNA sequencing was applied to detect ferroptosis-related gene expression and the levels of reactive oxygen species, malondialdehyde, and glutathione were quantified. Transmission electron microscopy (TEM) was then used to observe the changes in the mitochondrial morphology of glioma cells. The role of ferroptosis in the anti-tumor effect of YB1 was assessed in vivo in mouse tumor xenograft models. RESULTS Whole-transcriptome analysis revealed that Salmonella YB1 infection alters ferroptosis-related gene expression in the U87 glioma cell line. Moreover, we found that Salmonella-induced ferroptosis is correlated with reduced levels of glutathione and glutathione peroxidase-4 (GPX4) and increased levels of reactive oxygen species and malondialdehyde in vitro. Meanwhile, TEM revealed that mitochondria are shrunken and mitochondrial membrane density increases in infected glioma cells. Experiments in vivo further showed that tumor growth in the Salmonella-treated group was significantly slower compared to the control and Fer-1 groups. However, Salmonella-induced tumor suppression can be reversed in vivo by Fer-1 treatment. CONCLUSION Salmonella YB1 inhibits GPX4 expression and induces ferroptosis to suppress glioma growth. Hence, ferroptosis regulation might represent a promising strategy to improve the efficacy of bacterial cancer therapy.
Collapse
Affiliation(s)
- Jiawen Chen
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Nan Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yige He
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Jiasheng Zhong
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chengcheng Ma
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Meiqin Zeng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jingsen Ji
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shenzhen, 518055, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518055, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yiquan Ke
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
7
|
Zhang F, Yang S, Jiang L, Liu J, He Y, Sheng X, Chen H, Kang J, Jia S, Fan W, Huang F, He H. Melatonin-mediated malic enzyme 2 orchestrates mitochondrial fusion and respiratory functions to promote odontoblastic differentiation during tooth development. J Pineal Res 2023; 74:e12865. [PMID: 36864655 DOI: 10.1111/jpi.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 03/04/2023]
Abstract
Tooth development is a complex process that is tightly controlled by circadian rhythm. Melatonin (MT) is a major hormonal regulator of the circadian rhythm, and influences dentin formation and odontoblastic differentiation during tooth development; however, the underlying mechanism remains elusive. This study investigated how MT regulates odontoblastic differentiation, with a special focus on its regulation of mitochondrial dynamics. In rat dental papilla cells (DPCs), we found that MT promotes odontoblastic differentiation concurrently with enhanced mitochondrial fusion, while disruption of mitochondrial fusion by depleting optic atrophy 1 (OPA1) impairs MT-mediated differentiation and mitochondrial respiratory functions. Through RNA sequencing, we discovered that MT significantly upregulated malic enzyme 2 (ME2), a mitochondrial NAD(P)+ -dependent enzyme, and identified ME2 as a critical MT downstream effector that orchestrates odontoblastic differentiation, mitochondrial fusion, and respiration functions. By detecting the spatiotemporal expression of ME2 in developing tooth germs, and using tooth germ reconstituted organoids, we also provided in vivo and ex vivo evidence that ME2 promotes dentin formation, indicating a possible involvement of ME2 in MT-modulated tooth development. Collectively, our findings offer novel understandings regarding the molecular mechanism by which MT affects cell differentiation and organogenesis, meanwhile, the critical role of ME2 in MT-regulated mitochondrial functions is also highlighted.
Collapse
Affiliation(s)
- Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Liulin Jiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinyue Sheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoling Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jun Kang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Chang MC, Chen JH, Lee HN, Chen SY, Zhong BH, Dhingra K, Pan YH, Chang HH, Chen YJ, Jeng JH. Inducing cathepsin L expression/production, lysosomal activation, and autophagy of human dental pulp cells by dentin bonding agents, camphorquinone and BisGMA and the related mechanisms. BIOMATERIALS ADVANCES 2023; 145:213253. [PMID: 36563508 DOI: 10.1016/j.bioadv.2022.213253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Camphorquinone (CQ) and resin monomers are included in dentin bonding agents (DBAs) and composite resin to restore tooth defects due to abrasion, crown fracture, or dental caries. DBAs, CQ, and bisphenol A-glycidyl methacrylate (BisGMA) applications influence the biological activities of the dental pulp. The current investigation aimed to delineate the effect of DBAs, CQ, and BisGMA on cathepsin L production/expression, lysosomal activity, and autophagy induction in human dental pulp cells (HDPCs). HDPCs were exposed to DBAs, CQ, or BisGMA with/without inhibitors for 24 h. Enzyme-linked immunosorbent assay was employed to determine the cathepsin L level in culture medium. The cell layer was utilized to measure cell viability by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl -tetrazolium bromide (MTT) assay. Real-time PCR was used to evaluate the mRNA expression. Western blotting or immunofluorescent staining was used to study protein expression. Lysosomal density was evaluated by lysotracker red staining. We found that DBAs, CQ, and BisGMA stimulated cathepsin L mRNA, protein expression, and production in HDPCs. In addition, CQ and BisGMA induced lysosomal activity, Beclin1, ATG12, LC3B, Bax, and p53 expression in HDPCs, indicating the stimulation of autophagy. Glutathione (GSH) prevented CQ- and BisGMA-induced cytotoxicity. Moreover, E64d, cathepsin L inhibitor (two cathepsin inhibitors), and Pifithrin-α (a p53 inhibitor) showed little preventive effect toward CQ- and BisGMA-induced cytotoxicity. Autophagy inhibitors (NH4Cl, Lys05) mildly enhanced the CQ- and BisGMA-induced cytotoxicity. These results indicate that DBAs stimulated cathepsin L, possibly due to their content of CQ and BisGMA that may induce cathepsin L in HDPCs. CQ and BisGMA stimulated lysosomal activity, autophagy, and apoptosis, possibly via induction of Beclin 1, ATG12, LC-3B, Bax, and p53 expression. In addition, CQ and BisGMA cytotoxicity was related to redox change and autophagy. These events are important role in pulpal changes after the restoration of tooth decay using CQ- and BisGMA-containing DBAs and resin composite.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jen-Hao Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Na Lee
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyuan-Yow Chen
- Department of Dentistry, Cathay General Hospital, Taipei, Taiwan
| | - Bor-Hao Zhong
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Novel Strategy for Dental Caries by Physiologic Dentin Regeneration with CPNE7 peptide. Arch Oral Biol 2022; 143:105531. [DOI: 10.1016/j.archoralbio.2022.105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/19/2022]
|
10
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|