1
|
Hassanzadeh-Khanmiri M, Keyhanmanesh R, Mosaddeghi-Heris R, Delkhosh A, Rezaie J, Taghizadeh S, Sara MRS, Ahmadi M. Induction of chronic asthma up regulated the transcription of senile factors in male rats. BMC Mol Cell Biol 2024; 25:23. [PMID: 39425033 PMCID: PMC11492212 DOI: 10.1186/s12860-024-00518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The main characteristic of asthma is chronic inflammation. We examined cellular senescence by histology and molecular assay in the lungs of a rat model of asthma. This model comprises sensitization by several intraperitoneal injections of ovalbumin with aluminium hydroxide, followed by aerosol challenges every other day. RESULTS Data showed that asthma induction caused histological changes including, hyperemia, interstitial pneumonia, fibrinogen clots, and accumulation of inflammatory cells in the pleura. There is an elevation of IL-1β and NF-kB proteins in the asthmatic group (P < 0.001) compared to the control group. The expression of ß-galactosidase increased (P < 0.01), while the expression of Klotho and Sox2 genes was decreased in the lung tissue of the asthmatic group (P < 0.01). CONCLUSION Taken together, these findings suggest that asthmatic conditions accelerated the cellular senescence in the lung tissue.
Collapse
Affiliation(s)
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aref Delkhosh
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajjad Taghizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
2
|
Huang S, Li Y, Zeng J, Chang N, Cheng Y, Zhen X, Zhong D, Chen R, Ma G, Wang Y. Mesenchymal Stem/Stromal Cells in Asthma Therapy: Mechanisms and Strategies for Enhancement. Cell Transplant 2023; 32:9636897231180128. [PMID: 37318186 DOI: 10.1177/09636897231180128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Asthma is a complex and heterogeneous disease characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. Most asthmatic patients are well-established using standard treatment strategies and advanced biologicals. However, a small group of patients who do not respond to biological treatments or are not effectively controlled by available treatment strategies remain a clinical challenge. Therefore, new therapies are urgently needed for poorly controlled asthma. Mesenchymal stem/stromal cells (MSCs) have shown therapeutic potential in relieving airway inflammation and repairing impaired immune balance in preclinical trials owing to their immunomodulatory abilities. Noteworthy, MSCs exerted a therapeutic effect on steroid-resistant asthma with rare side effects in asthmatic models. Nevertheless, adverse factors such as limited obtained number, nutrient and oxygen deprivation in vitro, and cell senescence or apoptosis affected the survival rate and homing efficiency of MSCs, thus limiting the efficacy of MSCs in asthma. In this review, we elaborate on the roles and underlying mechanisms of MSCs in the treatment of asthma from the perspective of their source, immunogenicity, homing, differentiation, and immunomodulatory capacity and summarize strategies to improve their therapeutic effect.
Collapse
Affiliation(s)
- Si Huang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yiyang Li
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqing Zeng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Ning Chang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Xiangfan Zhen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dan Zhong
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
3
|
Rezaie J, Hosseinpour H, Rahbarghazi R, Keyhanmanesh R, Khanzadeh S, Mahdipour M, Soleimanpour J, Ahmadi M. Type 2 diabetes mellitus stimulated pulmonary vascular inflammation and exosome biogenesis in rats. Cell Biochem Funct 2023; 41:78-85. [PMID: 36335538 DOI: 10.1002/cbf.3764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
It has been shown that type 2 Diabetes Mellitus (T2DM) changes the paracrine activity of several cell types. Whether the biogenesis of exosomes is changed during diabetic conditions is the subject of debate. Here, we investigated the effect of T2M on exosome biogenesis in rat pulmonary tissue. Rats received a high-fat diet regime and a single low dose of Streptozocin to mimic the T2DM-like condition. A total of 8 weeks after induction of T2DM, rats were subjected to several analyses. Besides histological examination, vascular cell adhesion molecule 1 (VCAM-1) levels were detected using immunohistochemistry (IHC) staining. Transcription of several genes such as IL-1β, Alix, and Rab27b was calculated by real-time polymerase chain reaction assay. Using western blot analysis, intracellular CD63 levels were measured. The morphology and exosome secretion activity were assessed using acetylcholinesterase (AChE) assay and scanning electron microscopy, respectively. Histological results exhibited a moderate-to-high rate of interstitial pneumonia with emphysematous changes. IHC staining showed an increased VCAM-1 expression in the diabetic lungs compared with the normal conditions (p < .05). Likewise, we found the induction of IL-1β, and exosome-related genes Alix and Rab27b under diabetic conditions compared with the control group (p < .05). Along with these changes, protein levels of CD63 and AChE activity were induced upon the initiation of T2DM, indicating accelerated exosome biogenesis. Taken together, current data indicated the induction of exosome biogenesis in rat pulmonary tissue affected by T2DM. It seems that the induction of inflammatory niche is touted as a stimulatory factor to accelerate exosome secretion.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Hosseinpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shokoufeh Khanzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimanpour
- Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wei Z, Zhao Y, Hsu P, Guo S, Zhang C, Zhong B. Exosomes for gene therapy effectively inhibit the endothelial-mesenchymal transition in mouse aortic endothelial cells. BMC Musculoskelet Disord 2021; 22:1000. [PMID: 34847881 PMCID: PMC8630863 DOI: 10.1186/s12891-021-04896-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Background Heterotopic ossification (HO) can limit joint activity, causes ankylosis and impairs the function and rehabilitation of patients. Endothelial to mesenchymal transition (EndMT) plays an important role in the pathogenesis of HO, and high expression of SMAD7(Mothers Against Decapentaplegic Homolog 7) in endothelial cells can effectively reverse the TGF-β1 mediated EndMT. This article studied an appropriately engineered exosome with high biocompatibility and good targeting property to administrate SMAD7 gene therapy to inhibit the EndMT. Methods Exosomes from mouse aortic endothelial cells were cultured and harvested. DSPE-PEG and antibody CD34 were combined to exosomes to synthesize the endothelial cell targeting exosome vector (Exosome-DSPE-PEG-AbCD34). The biocompatibility, stability, targeting and cell internalization of exosome vector were tested, then the Exosome-DSPE-PEG-AbCD34 was loaded with Smad7 plasmid and administrated to MAECs to examine its therapeutic effect on EndMT of MAEC mediated by TGF-β1. Results The Exosome-DSPE-PEG-AbCD34 has no impact on MAEC cell viability at high concentration, and exosome-DSPE-PEG-AbCD34 could be stably stored at 4°C and 37°C for at least 8 days. Exosome-DSPE-PEG-AbCD34 has better targeting property to MAEC cells and can enter into the cells more effectively. The Exosome-DSPE-PEG-AbCD34-Smad7 could significantly increase the level of SMAD7, decrease the expression of TGF-β1, and effectively reverse the EndMT of MAEC mediated by TGF- β1 in MAEC cells. Conclusions The synthesized Exosome-DSPE-PEG-AbCD34-Smad7 has good biological properties and can effectively reverse the EndMT of MAEC mediated by TGF-β1. Thus, Exosome-DSPE-PEG-AbCD34-Smad7 may has the potential for the prevention and treatment of HO. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04896-0.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yang Zhao
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Peichun Hsu
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shang Guo
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chi Zhang
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Biao Zhong
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|