1
|
Deng H, Zhou J, Liu Z, Huang L, Gu Y, Chen P, Xiao H. Concomitant medication effects on patients with lung cancer taking immune checkpoint inhibitors a review. Med Oncol 2025; 42:40. [PMID: 39762456 DOI: 10.1007/s12032-024-02591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
In the past decade, a variety of immune checkpoint inhibitors (ICIs) are currently approved for lung cancer in the world. As a new therapeutic approach, ICIs have shown significant clinical benefits in the first-line or second-line treatment for advanced lung cancer, improving the survival and quality of life of patients. Patients need to take multiple drugs in the meantime due to their own disease or side effects during treatment. In view of drug interactions, concomitant medications have a positive or negative impact on the prognosis of lung cancer patients. In this review, we reviewed the effects of multiple drugs on the prognosis of patients with lung cancer taking ICIs. Several studies indicate that antibiotics, proton pump inhibitors (PPIs), corticosteroids, and opioid analgesics can decrease the efficacy of ICIs. Aspirin and bone-targeting drugs can enhance the efficacy of ICIs and improve the survival rate. The effects of metformin (MET), renin-angiotensin-aldosterone system inhibitors (RASI), nonsteroidal anti-inflammatory drug (NSAIDS) (except aspirin), and statins on ICIs are controversial. Future research should further explore the effects of these concomitant medications on ICIs and develop personalized prescriptions based on the specific needs of patients.
Collapse
Affiliation(s)
- Han Deng
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China
| | - Junxiang Zhou
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China
| | - Zhixi Liu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China
| | - Lu Huang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China
| | - Yanru Gu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China
| | - Peng Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Vida H, Sahar M, Nikdouz A, Arezoo H. Chemokines in neurodegenerative diseases. Immunol Cell Biol 2024. [PMID: 39723647 DOI: 10.1111/imcb.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Neurodegeneration and neuroinflammation disorders are mainly the result of the deposition of various proteins, such as α-synuclein, amyloid-β and prions, which lead to the initiation and activation of inflammatory responses. Different chemokines are involved in the infiltration and movement of inflammatory leukocytes into the central nervous system (CNS) that express chemokine receptors. Dysregulation of several members of chemokines has been shown in the CNS, cerebrospinal fluid and peripheral blood of patients who have neurodegenerative disorders. Upon infiltration of various cells, they produce many inflammatory mediators such as cytokines. Besides them, some CNS-resident cells, such as neurons and astrocytes, are also involved in the pathogenesis of neurodegeneration by producing chemokines. In this review, we summarize the role of chemokines and their related receptors in the pathogenesis of neurodegeneration and neuroinflammation disorders, including multiple sclerosis, Parkinson's disease and Alzheimer's disease. Therapeutic strategies targeting chemokines or their related receptors are also discussed in this article.
Collapse
Affiliation(s)
- Hashemi Vida
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehranfar Sahar
- Cellular and Molecular Medicine Research Institute, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Nikdouz
- Department of Translational Medicine, Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Vercelli, Italy
| | - Hosseini Arezoo
- Cellular and Molecular Medicine Research Institute, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, Garrido-Gil MJ, Barrena-Blázquez S, Minaya-Bravo AM, Rios-Parra A, Álvarez-Mon M, Jiménez-Álvarez L, López-González L, Guijarro LG, Diaz R, Saez MA. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med (Berl) 2024; 102:987-1000. [PMID: 38935130 DOI: 10.1007/s00109-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain.
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Laura Rios
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, 28801, Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain.
- Surgery Service, University Hospital Principe de Asturias, 28801, Alcala de Henares, Spain.
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| |
Collapse
|
4
|
Chen F, Sheng J, Li X, Gao Z, Zhao S, Hu L, Chen M, Fei J, Song Z. Unveiling the promise of PD1/PD-L1: A new dawn in immunotherapy for cholangiocarcinoma. Biomed Pharmacother 2024; 175:116659. [PMID: 38692063 DOI: 10.1016/j.biopha.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Cholangiocarcinoma (CCA), a rare yet notably aggressive cancer, has experienced a surge in incidence in recent years. Presently, surgical resection remains the most effective curative strategy for CCA. Nevertheless, a majority of patients with CCA are ineligible for surgical removal at the time of diagnosis. For advanced stages of CCA, the combination of gemcitabine and cisplatin is established as the standard chemotherapy regimen. Despite this, treatment efficacy is often hindered by the development of resistance. In recent times, immune checkpoint inhibitors, particularly those that block programmed death 1 and its ligand (PD1/PD-L1), have emerged as promising strategies against a variety of cancers and are being increasingly integrated into the therapeutic landscape of CCA. A growing body of research supports that the use of PD1/PD-L1 monoclonal antibodies in conjunction with chemotherapy may significantly improve patient outcomes. This article seeks to meticulously review the latest studies on PD1/PD-L1 involvement in CCA, delving into their expression profiles, prognostic significance, contribution to oncogenic processes, and their potential clinical utility.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian Sheng
- Department of Research and Teaching, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jianguo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
5
|
Qiu Y, Lu G, Li N, Hu Y, Tan H, Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front Immunol 2024; 15:1327281. [PMID: 38455041 PMCID: PMC10917936 DOI: 10.3389/fimmu.2024.1327281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.
Collapse
Affiliation(s)
- Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Na Li
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yanyan Hu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Hao Tan
- Thoracic Esophageal Radiotherapy Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chengyao Jiang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Gong B, Wang L, Zhang H, Wang Q, Li W. Amplifying T cell-mediated antitumor immune responses in nonsmall cell lung cancer through photodynamic therapy and anti-PD1. Cell Biochem Funct 2024; 42:e3925. [PMID: 38269509 DOI: 10.1002/cbf.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Photodynamic therapy (PDT) is nowadays widely employed in cancer treatment. We sought to assess the efficacy of combining PDT with anti-programmed cell death protein 1 (PD1) and to investigate the associated mechanisms in nonsmall cell lung cancer (NSCLC). We established a xenograft tumor model in C57BL/6J mice using Lewis lung carcinoma (LLC) cells, recorded tumor growth, and quantified reactive oxygen species (ROS) levels using a ROS detection kit. Pathological changes were assessed through H&E staining, while immunofluorescence (IF) was used to determine the expression of CD8 and Foxp3. Transcriptomic analysis was conducted, analyzing differential expressed genes (DEGs) among control, PDT, and PDT combined with anti-PD1 (PDT+anti-PD1) groups. Functional enrichment analysis via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The Cancer Genome Atlas (TCGA) database was utilized to analyze the expression of aminolevulinate synthase gene (ALAS2), integrin alpha10 (ITGA10), ATP1A2, a disintegrin and metalloprotease 12 (ADAM12), and Lox1 in lung adenocarcinoma and adjacent tissues, with concurrent immune infiltration analysis. Quantitative real-time polymerase chain reaction and western blot were employed to measure mRNA and protein expression levels. Treatment with PDT combined with anti-PD1 significantly inhibited tumor growth and increased the number of CD8+ cells while decreasing Foxp3+ cells. Immune infiltration results presented ALAS2, ADAM12, and ITGA10 were associated with various types of T cells or macrophages. Additionally, the expression levels of EGFR, ERK, and PI3K/Akt were suppressed after PDT with anti-PD1 treatment. Our findings collectively suggest that PDT combined with anti-PD1 treatment could enhance the infiltration of CD8+ T cells, suppressing tumor growth, and this effect was associated with ALAS2, ITGA10, and ADAM12. The underlying mechanism might be linked to EGFR, ERK, and PI3K/Akt signaling. Overall, this study provides valuable insights into the application of PDT combined with anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Beilei Gong
- Anhui Medical University, Hefei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Clinical and Preclinical Key Laboratory of Respiratory Disease in Anhui Province, Bengbu, China
| | - Liping Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Han Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qingkai Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Anhui Medical University, Hefei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Clinical and Preclinical Key Laboratory of Respiratory Disease in Anhui Province, Bengbu, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, China
| |
Collapse
|