1
|
Sousa AD, Costa AL, Costa V, Pereira C. Prediction and biological analysis of yeast VDAC1 phosphorylation. Arch Biochem Biophys 2024; 753:109914. [PMID: 38290597 DOI: 10.1016/j.abb.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), is the major permeability pathway for the flux of metabolites and ions between cytosol and mitochondria. In yeast, several Por1 phosphorylation sites have been identified. Protein phosphorylation is a major modification regulating a variety of biological activities, but the potential biological roles of Por1 phosphorylation remains unaddressed. In this work, we analysed 10 experimentally observed phosphorylation sites in yeast Por1 using bioinformatics tools. Two of the residues, T100 and S133, predicted to reduce and increase pore permeability, respectively, were validated using biological assays. In accordance, Por1T100D reduced mitochondrial respiration, while Por1S133E phosphomimetic mutant increased it. Por1T100A expression also improved respiratory growth, while Por1S133A caused defects in all growth conditions tested, notably in fermenting media. In conclusion, we found phosphorylation has the potential to modulate Por1, causing a marked effect on mitochondrial function. It can also impact on cell morphology and growth both in respiratory and, unpredictably, also in fermenting conditions, expanding our knowledge on the role of Por1 in cell physiology.
Collapse
Affiliation(s)
- André D Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Ana Luisa Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
2
|
Benz R. Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Front Physiol 2021; 12:734226. [PMID: 35547863 PMCID: PMC9083909 DOI: 10.3389/fphys.2021.734226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic porin, also known as Voltage-Dependent Anion Channel (VDAC), is the most frequent protein in the outer membrane of mitochondria that are responsible for cellular respiration. Mitochondria are most likely descendants of strictly aerobic Gram-negative bacteria from the α-proteobacterial lineage. In accordance with the presumed ancestor, mitochondria are surrounded by two membranes. The mitochondrial outer membrane contains besides the eukaryotic porins responsible for its major permeability properties a variety of other not fully identified channels. It encloses also the TOM apparatus together with the sorting mechanism SAM, responsible for the uptake and assembly of many mitochondrial proteins that are encoded in the nucleus and synthesized in the cytoplasm at free ribosomes. The recognition and the study of electrophysiological properties of eukaryotic porin or VDAC started in the late seventies of the last century by a study of Schein et al., who reconstituted the pore from crude extracts of Paramecium mitochondria into planar lipid bilayer membranes. Whereas the literature about structure and function of eukaryotic porins was comparatively rare during the first 10years after the first study, the number of publications started to explode with the first sequencing of human Porin 31HL and the recognition of the important function of eukaryotic porins in mitochondrial metabolism. Many genomes contain more than one gene coding for homologs of eukaryotic porins. More than 100 sequences of eukaryotic porins are known to date. Although the sequence identity between them is relatively low, the polypeptide length and in particular, the electrophysiological characteristics are highly preserved. This means that all eukaryotic porins studied to date are anion selective in the open state. They are voltage-dependent and switch into cation-selective substates at voltages in the physiological relevant range. A major breakthrough was also the elucidation of the 3D structure of the eukaryotic pore, which is formed by 19 β-strands similar to those of bacterial porin channels. The function of the presumed gate an α-helical stretch of 20 amino acids allowed further studies with respect to voltage dependence and function, but its exact role in channel gating is still not fully understood.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
3
|
Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, Avalos JL. Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:157. [PMID: 34274018 PMCID: PMC8285809 DOI: 10.1186/s13068-021-02008-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/05/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. RESULTS In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. CONCLUSIONS The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Maria Alvarez
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
- Department of Chemical Engineering, University of Vigo, 36310, Vigo, Spain
| | - Gilad Alfassi
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergio Garcia-Echauri
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - José L Avalos
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
4
|
Cruz-Garcia D, Brouwers N, Malhotra V, Curwin AJ. Reactive oxygen species triggers unconventional secretion of antioxidants and Acb1. J Cell Biol 2020; 219:151570. [PMID: 32328640 PMCID: PMC7147093 DOI: 10.1083/jcb.201905028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nutrient deprivation triggers the release of signal-sequence–lacking Acb1 and the antioxidant superoxide dismutase 1 (SOD1). We now report that secreted SOD1 is functionally active and accompanied by export of other antioxidant enzymes such as thioredoxins (Trx1 and Trx2) and peroxiredoxin Ahp1 in a Grh1-dependent manner. Our data reveal that starvation leads to production of nontoxic levels of reactive oxygen species (ROS). Treatment of cells with N-acetylcysteine (NAC), which sequesters ROS, prevents antioxidants and Acb1 secretion. Starved cells lacking Grh1 are metabolically active, but defective in their ability to regrow upon return to growth conditions. Treatment with NAC restored the Grh1-dependent effect of starvation on cell growth. In sum, starvation triggers ROS production and cells respond by secreting antioxidants and the lipogenic signaling protein Acb1. We suggest that starvation-specific unconventional secretion of antioxidants and Acb1-like activities maintain cells in a form necessary for growth upon their eventual return to normal conditions.
Collapse
Affiliation(s)
- David Cruz-Garcia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis COmpanys 23, 08010 Barcelona, Spain
| | - Amy J Curwin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Tulha J, Lucas C. Saccharomyces cerevisiae mitochondrial Por1/yVDAC1 (voltage-dependent anion channel 1) interacts physically with the MBOAT O-acyltransferase Gup1/HHATL in the control of cell wall integrity and programmed cell death. FEMS Yeast Res 2019; 18:5089977. [PMID: 30184078 DOI: 10.1093/femsyr/foy097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023] Open
Abstract
Gup1 is the yeast counterpart of the high eukaryotes HHATL. This and the close homologue Gup2/HHAT regulate the Hedgehog morphogenic, developmental pathway. In yeasts, a similar paracrine pathway is not known though the Δgup1 mutant is associated with morphology and proliferation/death processes. As a first step toward identifying the actual molecular/enzymatic function of Gup1, this work identified by co-immunoprecipitation the yeast mitochondria membrane VDAC1/Por1 as a physical partner of Gup1. Gup1 locates in the ER and the plasma membrane. It was now confirmed to further locate, as Por1, in the mitochondrial sub-cellular fraction. The yeast Por1-Gup1 association was found important for (i) the sensitivity to cell wall perturbing agents and high temperature, (ii) the differentiation into structured colonies, (iii) the size achieved by multicellular aggregates/mats and (iv) acetic-acid-induced Programmed Cell Death. Moreover, the absence of Gup1 increased the levels of POR1 mRNA, while decreasing the amounts of intracellular Por1, which was concomitantly previously known to be secreted by the mutant but not by wt. Additionally, Por1 patchy distribution in the mitochondrial membrane was evened. Results suggest that Por1 and Gup1 collaborate in the control of colony morphology and mat development, but more importantly of cellular integrity and death.
Collapse
Affiliation(s)
- Joana Tulha
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal.,Institute of Science and Innovation on Bio-sustainability (IB-S), University of Minho, 4710-054 Braga, Portugal
| |
Collapse
|
6
|
VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2213-2223. [DOI: 10.1016/j.bbamem.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/06/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023]
|
7
|
Madamba SM, Damri KN, Dejean LM, Peixoto PM. Mitochondrial Ion Channels in Cancer Transformation. Front Oncol 2015; 5:120. [PMID: 26090338 PMCID: PMC4455240 DOI: 10.3389/fonc.2015.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process.
Collapse
Affiliation(s)
- Stephen M. Madamba
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
| | - Kevin N. Damri
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Laurent M. Dejean
- Department of Chemistry, College of Science and Mathematics, California State University Fresno, Fresno, CA, USA
| | - Pablo M. Peixoto
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
- Department of Basic Sciences, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
8
|
Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylation in mitochondria - A study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010; 31:2869-81. [DOI: 10.1002/elps.200900759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Mannella CA, Kinnally KW. Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator. J Bioenerg Biomembr 2009; 40:149-55. [PMID: 18648913 DOI: 10.1007/s10863-008-9143-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is excellent agreement between the electrophysiological properties and the structure of the mitochondrial outer membrane protein, VDAC, ex vivo. However, the inference that the well-defined canonical "open" state of the VDAC pore is the normal physiological state of the channel in vivo is being challenged by several lines of evidence. Knowing the atomic structure of the detergent solubilized protein, a long sought after goal, will not be sufficient to understand the functioning of this channel protein. In addition, detailed information about VDAC's topology in the outer membrane of intact mitochondria, and the structural changes that it undergoes in response to different stimuli in the cell will be needed to define its physiological functions and regulation.
Collapse
Affiliation(s)
- Carmen A Mannella
- Resource for Visualization of Biological Complexity, Wadsworth Center, Albany, NY 12201-0509, USA
| | | |
Collapse
|
10
|
Lee L, Stochaj U. Rapid purification of the outer mitochondrial membrane protein Por1p from Saccharomyces cerevisiae. Biotechniques 2004; 36:36-8. [PMID: 14740480 DOI: 10.2144/04361bm02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lawrence Lee
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, PQ, H3G 1Y6, Canada
| | | |
Collapse
|
11
|
Santos-Ocaña C, Do TQ, Padilla S, Navas P, Clarke CF. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J Biol Chem 2002; 277:10973-81. [PMID: 11788608 DOI: 10.1074/jbc.m112222200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme Q (Q) is an essential component of the mitochondrial respiratory chain in eukaryotic cells but also is present in other cellular membranes where it acts as an antioxidant. Because Q synthesis machinery in Saccharomyces cerevisiae is located in the mitochondria, the intracellular distribution of Q indicates the existence of intracellular Q transport. In this study, the uptake of exogenous Q(6) by yeast and its transport from the plasma membrane to mitochondria was assessed in both wild-type and in Q-less coq7 mutants derived from four distinct laboratory yeast strains. Q(6) supplementation of medium containing ethanol, a non-fermentable carbon source, rescued growth in only two of the four coq7 mutant strains. Following culture in medium containing dextrose, the added Q(6) was detected in the plasma membrane of each of four coq7 mutants tested. This detection of Q(6) in the plasma membrane was corroborated by measuring ascorbate stabilization activity, as catalyzed by NADH-ascorbate free radical reductase, a transmembrane redox activity that provides a functional assay of plasma membrane Q(6). These assays indicate that each of the four coq7 mutant strains assimilate exogenous Q(6) into the plasma membrane. The two coq7 mutant strains rescued by Q(6) supplementation for growth on ethanol contained mitochondrial Q(6) levels similar to wild type. However, the content of Q(6) in mitochondria from the non-rescued strains was only 35 and 8%, respectively, of that present in the corresponding wild-type parental strains. In yeast strains rescued by exogenous Q(6), succinate-cytochrome c reductase activity was partially restored, whereas non-rescued strains contained very low levels of activity. There was a strong correlation between mitochondrial Q(6) content, succinate-cytochrome c reductase activity, and steady state levels of the cytochrome c(1) polypeptide. These studies show that transport of extracellular Q(6) to the mitochondria operates in yeast but is strain-dependent. When Q biosynthesis is disrupted in yeast strains with defects in the intracellular transport of exogenous Q, the bc(1) complex is unstable. These results indicate that delivery of exogenous Q(6) to mitochondria is required fore activity and stability of the bc(1) complex in yeast coq mutants.
Collapse
Affiliation(s)
- Carlos Santos-Ocaña
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
12
|
Salmon JM, Barre P. Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol 1998; 64:3831-7. [PMID: 9758807 PMCID: PMC106562 DOI: 10.1128/aem.64.10.3831-3837.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metabolism of nitrogen compounds by yeasts affects the efficiency of wine fermentation. Ammonium ions, normally present in grape musts, reduce catabolic enzyme levels and transport activities for nonpreferred nitrogen sources. This nitrogen catabolite repression severely impairs the utilization of proline and arginine, both common nitrogen sources in grape juice that require the proline utilization pathway for their assimilation. We attempted to improve fermentation performance by genetic alteration of the regulation of nitrogen-assimilatory pathways in Saccharomyces cerevisiae. One mutant carrying a recessive allele of ure2 was isolated from an industrial S. cerevisiae strain. This mutation strongly deregulated the proline utilization pathway. Fermentation kinetics of this mutant were studied under enological conditions on simulated standard grape juices with various nitrogen levels. Mutant strains produced more biomass and exhibited a higher maximum CO2 production rate than the wild type. These differences were primarily due to the derepression of amino acid utilization pathways. When low amounts of dissolved oxygen were added, the mutants could assimilate proline. Biomass yield and fermentation rate were consequently increased, and the duration of the fermentation was substantially shortened. S. cerevisiae strains lacking URE2 function could improve alcoholic fermentation of natural media where proline and other poorly assimilated amino acids are the major potential nitrogen source, as is the case for most fruit juices and grape musts.
Collapse
Affiliation(s)
- J M Salmon
- Laboratoire de Microbiologie et de Technologie des Fermentations, Institut des Produits de la Vigne, Institut National de la Recherche Agronomique, 34060 Montpellier Cedex 1, France.
| | | |
Collapse
|