1
|
RNase P Inhibitors Identified as Aggregators. Antimicrob Agents Chemother 2021; 65:e0030021. [PMID: 33972249 DOI: 10.1128/aac.00300-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).
Collapse
|
2
|
Novopashina D, Vorobyeva M, Nazarov A, Davydova A, Danilin N, Koroleva L, Matveev A, Bardasheva A, Tikunova N, Kupryushkin M, Pyshnyi D, Altman S, Venyaminova A. Novel Peptide Conjugates of Modified Oligonucleotides for Inhibition of Bacterial RNase P. Front Pharmacol 2019; 10:813. [PMID: 31379580 PMCID: PMC6658616 DOI: 10.3389/fphar.2019.00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
Novel alternatives to traditional antibiotics are now of great demand for the successful treatment of microbial infections. Here, we present the engineering and properties of new oligonucleotide inhibitors of RNase P, an essential bacterial enzyme. The series of 2’-O-methyl RNA (2’-OMe-RNA) and phosphoryl guanidine oligonucleotides were targeted to the substrate-binding region of M1 RNA subunit of the RNase P. Uniformly modified 2’-OMe RNA and selectively modified phosphoryl guanidine oligonucleotides possessed good stability in biological media and effectively inhibited RNase P. Their conjugates with transporting peptides were shown to penetrate bacterial cells (Escherichia coli and Acinetobacter baumannii) and inhibit bacterial growth.
Collapse
Affiliation(s)
- Darya Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton Nazarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay Danilin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Lyudmila Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alevtina Bardasheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Maxim Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitrii Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States.,Division of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol 2016; 133:29-42. [PMID: 28012959 DOI: 10.1016/j.bcp.2016.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.
Collapse
Affiliation(s)
- Savannah Colameco
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Marie A Elliot
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
4
|
Walczyk D, Willkomm DK, Hartmann RK. Bacterial type B RNase P: functional characterization of the L5.1-L15.1 tertiary contact and antisense inhibition. RNA (NEW YORK, N.Y.) 2016; 22:1699-1709. [PMID: 27604960 PMCID: PMC5066622 DOI: 10.1261/rna.057422.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Ribonuclease P is the ubiquitous endonuclease that generates the mature 5'-ends of precursor tRNAs. In bacteria, the enzyme is composed of a catalytic RNA (∼400 nucleotides) and a small essential protein subunit (∼13 kDa). Most bacterial RNase P RNAs (P RNAs) belong to the architectural type A; type B RNase P RNA is confined to the low-G+C Gram-positive bacteria. Here we demonstrate that the L5.1-L15.1 intradomain contact in the catalytic domain of the prototypic type B RNase P RNA of Bacillus subtilis is crucial for adopting a compact functional conformation: Disruption of the L5.1-L15.1 contact by antisense oligonucleotides or mutation reduced P RNA-alone and holoenzyme activity by one to two orders of magnitude in vitro, largely retarded gel mobility of the RNA and further affected the structure of regions P7/P8/P10.1, P15 and L15.2, and abolished the ability of B. subtilis P RNA to complement a P RNA-deficient Escherichia coli strain. We also provide mutational evidence that an L9-P1 tertiary contact, as found in some Mycoplasma type B RNAs, is not formed in canonical type B RNAs as represented by B. subtilis P RNA. We finally explored the P5.1 and P15 stem-loop structures as targets for LNA-modified antisense oligonucleotides. Oligonucleotides targeting P15, but not those directed against P5.1, were found to efficiently anneal to P RNA and to inhibit activity (IC50 of ∼2 nM) when incubated with preassembled B. subtilis RNase P holoenzymes.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Dagmar K Willkomm
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein Campus Lübeck, D-23538 Lübeck, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
5
|
Wu S, Mao G, Kirsebom LA. Inhibition of Bacterial RNase P RNA by Phenothiazine Derivatives. Biomolecules 2016; 6:biom6030038. [PMID: 27618117 PMCID: PMC5039424 DOI: 10.3390/biom6030038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
There is a need to identify novel scaffolds and targets to develop new antibiotics. Methylene blue is a phenothiazine derivative, and it has been shown to possess anti-malarial and anti-trypanosomal activities. Here, we show that different phenothiazine derivatives and pyronine G inhibited the activities of three structurally different bacterial RNase P RNAs (RPRs), including that from Mycobacterium tuberculosis, with Ki values in the lower μM range. Interestingly, three antipsychotic phenothiazines (chlorpromazine, thioridazine, and trifluoperazine), which are known to have antibacterial activities, also inhibited the activity of bacterial RPRs, albeit with higher Ki values than methylene blue. Phenothiazines also affected lead(II)-induced cleavage of bacterial RPR and inhibited yeast tRNA(Phe), indicating binding of these drugs to functionally important regions. Collectively, our findings provide the first experimental data showing that long, noncoding RNAs could be targeted by different phenothiazine derivatives.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala SE-751 24, Sweden.
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala SE-751 24, Sweden.
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, Uppsala SE-751 24, Sweden.
| |
Collapse
|
6
|
Manivannan SN, Lai LB, Gopalan V, Simcox A. Transcriptional control of an essential ribozyme in Drosophila reveals an ancient evolutionary divide in animals. PLoS Genet 2015; 11:e1004893. [PMID: 25569672 PMCID: PMC4287351 DOI: 10.1371/journal.pgen.1004893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential enzyme required for 5'-maturation of tRNA. While an RNA-free, protein-based form of RNase P exists in eukaryotes, the ribonucleoprotein (RNP) form is found in all domains of life. The catalytic component of the RNP is an RNA known as RNase P RNA (RPR). Eukaryotic RPR genes are typically transcribed by RNA polymerase III (pol III). Here we showed that the RPR gene in Drosophila, which is annotated in the intron of a pol II-transcribed protein-coding gene, lacks signals for transcription by pol III. Using reporter gene constructs that include the RPR-coding intron from Drosophila, we found that the intron contains all the sequences necessary for production of mature RPR but is dependent on the promoter of the recipient gene for expression. We also demonstrated that the intron-coded RPR copurifies with RNase P and is required for its activity. Analysis of RPR genes in various animal genomes revealed a striking divide in the animal kingdom that separates insects and crustaceans into a single group in which RPR genes lack signals for independent transcription and are embedded in different protein-coding genes. Our findings provide evidence for a genetic event that occurred approximately 500 million years ago in the arthropod lineage, which switched the control of the transcription of RPR from pol III to pol II.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Molecular Cellular Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
| | - Lien B. Lai
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Venkat Gopalan
- Molecular Cellular Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (AS)
| | - Amanda Simcox
- Molecular Cellular Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (AS)
| |
Collapse
|
7
|
Liu X, Chen Y, Fierke CA. A real-time fluorescence polarization activity assay to screen for inhibitors of bacterial ribonuclease P. Nucleic Acids Res 2014; 42:e159. [PMID: 25249623 PMCID: PMC4227764 DOI: 10.1093/nar/gku850] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Abstract
RNase P RNA is an ancient, nearly universal feature of life. As part of the ribonucleoprotein RNase P complex, the RNA component catalyzes essential removal of 5' leaders in pre-tRNAs. In 2004, Li and Altman computationally identified the RNase P RNA gene in all but three sequenced microbes: Nanoarchaeum equitans, Pyrobaculum aerophilum, and Aquifex aeolicus (all hyperthermophiles) [Li Y, Altman S (2004) RNA 10:1533-1540]. A recent study concluded that N. equitans does not have or require RNase P activity because it lacks 5' tRNA leaders. The "missing" RNase P RNAs in the other two species is perplexing given evidence or predictions that tRNAs are trimmed in both, prompting speculation that they may have developed novel alternatives to 5' pre-tRNA processing. Using comparative genomics and improved computational methods, we have now identified a radically minimized form of the RNase P RNA in five Pyrobaculum species and the related crenarchaea Caldivirga maquilingensis and Vulcanisaeta distributa, all retaining a conventional catalytic domain, but lacking a recognizable specificity domain. We confirmed 5' tRNA processing activity by high-throughput RNA sequencing and in vitro biochemical assays. The Pyrobaculum and Caldivirga RNase P RNAs are the smallest naturally occurring form yet discovered to function as trans-acting precursor tRNA-processing ribozymes. Loss of the specificity domain in these RNAs suggests altered substrate specificity and could be a useful model for finding other potential roles of RNase P. This study illustrates an effective combination of next-generation RNA sequencing, computational genomics, and biochemistry to identify a divergent, formerly undetectable variant of an essential noncoding RNA gene.
Collapse
|
9
|
Zhang L, Leibowitz MJ, Zhang Y. Antisense oligonucleotides effectively inhibit the co-transcriptional splicing of a Candida group I intron in vitro and in vivo: Implications for antifungal therapeutics. FEBS Lett 2009; 583:734-8. [PMID: 19185575 DOI: 10.1016/j.febslet.2009.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/02/2009] [Accepted: 01/15/2009] [Indexed: 11/27/2022]
Abstract
Self-splicing of group I intron from the 26S rRNA of Candida albicans is essential for maturation of the host RNA. Here, we demonstrated that the co-transcriptional splicing of the intron in vitro was blocked by antisense oligonucleotides (AONs) targeting the P3-P7 core of the intron. The core-targeted AON effectively and specifically inhibited the intron splicing from its host RNA in living C. albicans. Furthermore, flow cytometry experiments showed that the growth inhibition was caused by a fungicidal effect. For the first time, we showed that an AON targeting the ribozyme core folding specifically inhibits the endogenous ribozyme splicing in living cells and specifically kills the intron-containing fungal strains, which sheds light on the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Libin Zhang
- State Key Laboratory of Virology and Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | |
Collapse
|
10
|
Rasmussen LCV, Sperling-Petersen HU, Mortensen KK. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 2007; 6:24. [PMID: 17692125 PMCID: PMC1995221 DOI: 10.1186/1475-2859-6-24] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 08/10/2007] [Indexed: 12/16/2022] Open
Abstract
An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.
Collapse
Affiliation(s)
| | - Hans Uffe Sperling-Petersen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Kim Kusk Mortensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Gruegelsiepe H, Brandt O, Hartmann RK. Antisense inhibition of RNase P: mechanistic aspects and application to live bacteria. J Biol Chem 2006; 281:30613-20. [PMID: 16901906 DOI: 10.1074/jbc.m603346200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We explored bacterial RNase P as a drug target using antisense oligomers against the P15 loop region of Escherichia coli RNase P RNA. An RNA 14-mer, or locked nucleic acid (LNA) and peptide nucleic acid (PNA) versions thereof, disrupted local secondary structure in the catalytic core, forming hybrid duplexes over their entire length. Binding of the PNA and LNA 14-mers to RNase P RNA in vitro was essentially irreversible and even resisted denaturing PAGE. Association rates for the RNA, LNA, and PNA 14-mers were approximately 10(5) m(-1) s(-1) with a rate advantage for PNA and were thus rather fast despite the need to disrupt local structure. Conjugates in which the PNA 14-mer was coupled to an invasive peptide via a novel monoglycine linker showed RNase P RNA-specific growth inhibition of E. coli cells. Cell growth could be rescued when expressing a second bacterial RNase P RNA with an unrelated sequence in the target region. We report here for the first time specific and growth-inhibitory drug targeting of RNase P in live bacteria. This is also the first example of a duplex-forming oligomer that invades a structured catalytic RNA and inactivates the RNA by (i) trapping it in a state in which the catalytic core is partially unfolded, (ii) sterically interfering with substrate binding, and (iii) perturbing the coordination of catalytically relevant Mg2+ ions.
Collapse
Affiliation(s)
- Heike Gruegelsiepe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | |
Collapse
|
12
|
Willkomm DK, Gruegelsiepe H, Goudinakis O, Kretschmer-Kazemi Far R, Bald R, Erdmann VA, Hartmann RK. Evaluation of bacterial RNase P RNA as a drug target. Chembiochem 2004; 4:1041-8. [PMID: 14523922 DOI: 10.1002/cbic.200300674] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA has gained increasing importance as a therapeutic target. However, so far mRNAs rather than stable cellular RNAs have been considered in such studies. In bacteria, the tRNA-processing enzyme RNase P has a catalytic RNA subunit. Fundamental differences in structure and function between bacterial and eukaryotic RNase P, and its indispensability for cell viability make the bacterial enzyme an attractive drug target candidate. Herein we describe two approaches utilized to evaluate whether the catalytic RNA subunit of bacterial RNase P is amenable to inactivation by antisense-based strategies. In the first approach, we rationally designed RNA hairpin oligonucleotides targeted at the tRNA 3'-CCA binding site (P15 loop region) of bacterial RNase P RNA by attempting to include principles derived from the natural CopA-CopT antisense system. Substantial inactivation of RNase P RNA was observed for Type A RNase P RNA (such as that in Escherichia coli) but not for Type B (as in Mycoplasma hyopneumoniae). Moreover, only an RNA oligonucleotide (Eco 3') complementary to the CCA binding site and its 3' flanking sequences was shown to be an efficient inhibitor. Mutation of Eco 3' and analysis of other natural RNase P RNAs with sequence deviations in the P15 loop region showed that inhibition is due to interaction of Eco 3' with this region and occurs in a highly sequence-specific manner. A DNA version of Eco 3' was a less potent inhibitor. The potential of Eco 3' to form an initial kissing complex with the P15 loop did not prove advantageous. In a second approach, we tested a set of oligonucleotides against E. coli RNase P RNA which were designed by algorithms developed for the selection of suitable mRNA targets. This approach identified the P10/11-J11/12 region of bacterial RNase P RNA as another accessible region. In conclusion, both the P15 loop and P10/11-J11/12 regions of Type A RNase P RNAs seem to be promising antisense target sites since they are easily accessible and sufficiently interspersed with nonhelical sequence elements, and oligonucleotide binding directly interferes with substrate docking to these two regions.
Collapse
Affiliation(s)
- Dagmar K Willkomm
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, 35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|