1
|
Znati M, Debbabi M, Romdhane A, Ben Jannet H, Bouajila J. Synthesis of new anticancer and anti-inflammatory isoxazolines and aziridines from the natural (-)-deltoin. J Pharm Pharmacol 2018; 70:1700-1712. [DOI: 10.1111/jphp.13013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/26/2018] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
This work describes the synthesis, the bioactivity and the structure–activity relationship of new derivatives from a natural coumarin.
Methods
(-)-Deltoin 1 and the corresponding isoxazolines and aziridines were characterized by spectroscopic means. The cytotoxic (HTC-116, IGROV-1 and OVCAR-3 cancer cell lines) and 5-lipoxygenase activity of (-)-deltoin 1 and its structural analogues have been evaluated.
Key findings
The phytochemical investigation of the ethyl acetate extract of the flowers of Ferula lutea (Poir.) Maire has led to the isolation of (-)-deltoin 1. A series of new isoxazoline 2a,a′–2f,f′ and aziridine 3a,a′–3e,e′ derivatives have been prepared by 1,3-dipolar cycloaddition. It has been found that the derivatives 2a (IC50 = 3.3 ± 0.1 μm), 3a,a′ (IC50 = 5.9 ± 0.1 μm), 3b,b′ (IC50 = 6.1 ± 0.7 μm) and 3c,c′ (IC50 = 7.3 ± 0.9 μm) bearing a phenyl isoxazoline, a phenylaziridine, a 4-methlphenylaziridine and a 4-methoxyphenylaziridine, respectively, are more cytotoxic than (-)-deltoin 1 (IC50 = 14.3 ± 0.2 μm). The diastereoisomers in mixture (2f,f′) with a 6-chloropyridin-2-yl system have shown the best anti-5-lipoxygenase activity (% inhibition = 53.1 ± 4.8% at 200 μm).
Conclusions
Some analogues have been found more bioactive than deltoin 1. Their activity has been related to the nature of the added heterocycles. It would be interesting to evaluate their in-vivo activity.
Collapse
Affiliation(s)
- Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Meriem Debbabi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia
| | - Jalloul Bouajila
- Laboratory of IMRCP UMR CNRS 5623, Faculty of Pharmacy Toulouse, Paul-Sabatier University, University of Toulouse,, Toulouse, France
| |
Collapse
|
2
|
Ibáñez E, Plano D, Font M, Calvo A, Prior C, Palop JA, Sanmartín C. Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. Eur J Med Chem 2010; 46:265-74. [PMID: 21115210 DOI: 10.1016/j.ejmech.2010.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/18/2010] [Accepted: 11/06/2010] [Indexed: 01/18/2023]
Abstract
The study described here concerns the synthesis of a series of thirty new symmetrically substituted imidothiocarbamate and imidoselenocarbamate derivatives and their evaluation for antitumoral activity in vitro against a panel of five human tumor cell lines: breast adenocarcinoma (MCF-7), colon carcinoma (HT-29), lymphocytic leukemia (K-562), hepatocarcinoma (Hep-G2), prostate cancer (PC-3) and one non-malignant mammary gland-derived cell line (MCF-10A). The GI(50) values for eighteen of the compounds were below 10 μM in at least one cell line. Two cancer cells (MCF-7 and HT-29) proved to be the most sensitive to five compounds (1b, 2b, 3b, 4b and 5b), with growth inhibition in the nanomolar range, and compounds 1b, 3b, 7b, 8b and 9b gave values of less than 1 μM. In addition, all of the aforementioned compounds exhibited lower GI(50) values than some of the standard chemotherapeutic drugs used as references. The results also reveal that the nature of the aliphatic chain (methyl is better than benzyl) at the selenium position and the nature of the heteroatom (Se better than S) have a marked influence on the antiproliferative activity of the compounds. These findings reinforce our earlier hypothesis concerning the determinant role of the selenomethyl group as a scaffold for the biological activity of this type of compound. Considering both the cytotoxic parameters and the selectivity index (which was compared in MCF-7 and MCF-10A cells), compounds 2b and 8b (with a selenomethyl moiety) displayed the best profiles, with GI(50) values ranging from 0.34 nM to 6.07 μM in the five cell lines tested. Therefore, compounds 2b and 8b were evaluated by flow cytometric analysis for their effects on cell cycle distribution and apoptosis in MCF-7 cells. 2b was the most active, with an apoptogenic effect similar to camptothecin, which was used as a positive control. Both of them provoked cell cycle arrest leading to the accumulation of cells in either G(2)/M and S phase. These two compounds can therefore be considered as the most promising candidates for the development of novel generations of antitumor agents.
Collapse
Affiliation(s)
- Elena Ibáñez
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Lin YL, Su YT, Chen BH. A study on inhibition mechanism of breast cancer cells by bis-type triaziquone. Eur J Pharmacol 2010; 637:1-10. [DOI: 10.1016/j.ejphar.2010.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/02/2010] [Accepted: 03/13/2010] [Indexed: 12/29/2022]
|
4
|
Meguellati K, Spichty M, Ladame S. Synthesis, spectroscopic and DNA alkylating properties of malondialdehyde (MDA) bis-imine fluorescent adducts. MOLECULAR BIOSYSTEMS 2010; 6:1694-9. [DOI: 10.1039/c002157a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Synthesis and antitumor evaluation of novel bis-triaziquone derivatives. Molecules 2009; 14:2306-16. [PMID: 19633605 PMCID: PMC6255275 DOI: 10.3390/molecules14072306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 11/17/2022] Open
Abstract
Aziridine-containing compounds have been of interest as anticancer agents since late 1970s. The design, synthesis and study of triaziquone (TZQ) analogues with the aim of obtaining compounds with enhanced efficacy and reduced toxicity are an ongoing research effort in our group. A series of bis-type TZQ derivatives has been prepared and their cytotoxic activities were investigated. The cytotoxicity of these bis-type TZQ derivatives were tested on three cancer lines, including breast cancer (BC-M1), oral cancer (OEC-M1), larynx epidermal cancer (Hep2) and one normal skin fibroblast (SF). Most of these synthetic derivatives displayed significant cytotoxic activities against human carcinoma cell lines, but weak activities against SF. Among tested analogues the bis-type TZQ derivative 1a showed lethal effects on larynx epidermal carcinoma cells (Hep2), with an LC50 value of 2.02 mM, and also weak cytotoxic activity against SF cells with an LC50 value over 10 mM for 24 hr treatment. Comparing the viability of normal fibroblast cells treated with compound 1a and TZQ, the LC50 value of the latter was 2.52 mM, indicating more toxicity than compound 1a. This significantly decreased cytotoxicity of compound 1a towards normal SF cells, while still maintaining the anticancer activity towards Hep2 cells is an interesting feature. Among the seven compounds synthesized, compound 1c has similar toxicity effects on the three cancer cell lines and SF normal cells as the TZQ monomer.
Collapse
|
6
|
Huang ST, Ho CS, Lin CM, Fang HW, Peng YX. Development and biological evaluation of C(60) fulleropyrrolidine-thalidomide dyad as a new anti-inflammation agent. Bioorg Med Chem 2008; 16:8619-26. [PMID: 18723357 DOI: 10.1016/j.bmc.2008.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
Research studies in the field of C(60) fullerene derivatives have significantly increased due to the broad range of biological activities that were found for these compounds. We designed and prepared a new C(60) fullerene hybrid bearing thalidomide as a potential double-action anti-inflammatory agent, capable of simultaneous inhibition of LPS-induced NO and TNF-alpha production. The C(60) fulleropyrrolidine-thalidomide dyad, CLT, was an effective agent to suppress the release of NO and TNF-alpha by the LPS-stimulated macrophages RAW 264.7. Ten micromolars of CLT effectively inhibited LPS-induced NO and TNF-alpha production by 47.3+/-4.2% and 70.2+/-4% with respected to the control, respectively. Furthermore, preliminary biochemical investigation revealed that CLT was a potent agent to suppress both LPS-induced intracellular ROS production and iNOS expression, and CLT also inhibited the phosphorylation of ERK which is an important protein kinase involved in the activation of TNF-alpha synthesis in LPS-activated macrophages. We believed that the studies herein would hold promise for future development of a new generation of potent anti-inflammatory agents.
Collapse
Affiliation(s)
- Sheng-Tung Huang
- Graduate Institute of Biotechnology, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Road, Taipei 106, Taiwan.
| | | | | | | | | |
Collapse
|
7
|
Huang ST, Liao JS, Fang HW, Lin CM. Synthesis and anti-inflammation evaluation of new C60 fulleropyrrolidines bearing biologically active xanthine. Bioorg Med Chem Lett 2008; 18:99-103. [DOI: 10.1016/j.bmcl.2007.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/17/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
|
8
|
Peng YC, Kuo HS, Tsai HD, Yang YP, Lin YL. The lethal effect of bis-type azridinylnaphthoquinone derivative on oral cancer cells (OEC-M1) associated with anti-apoptotic protein bcl-2. Bioorg Med Chem 2006; 14:263-72. [PMID: 16213738 DOI: 10.1016/j.bmc.2005.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 08/03/2005] [Accepted: 08/04/2005] [Indexed: 11/16/2022]
Abstract
Several drugs of aziridinylbenzoquinone analogs have undergone clinical trials as potential antitumor drugs. These bioreductive compounds are designed to kill tumor cells preferentially within the hypoxic microenvironment. From our previous reported data, it was found that the synthesized 2-aziridin-1-yl-3-[(2-[2-[(3-aziridin-1-yl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)thio]ethoxy]ethyl)thio]naphthoquinone (AZ-1) is a bioreductive compound with potent lethal effect on oral cancer cell, OEC-M1. It was found in this study that the lethal effect of the oral cancer cell lines OEC-M1 induced by AZ-1 was mediated through the cell cycle arrest and apoptosis pathway. The LC50 values of OEC-M1 and KB cells induced by AZ-1 compound were 0.72 and 1.02 microM, respectively, which were much lower than that of normal fibroblast cells (SF with LC50 = 5.6 microM) with more than 90% of normal fibroblasts surviving as compared to control at a concentration of AZ-1 as high as 2 microM. It was interesting to note that the LC50 of monotype diaziridinylbenzoquinone compound, diaziquone (AZQ), was 50 microM on OEC-M1 cells. Comparing the cytotoxicity of AZ-1 and AZQ on OEC-M1 cells, AZ-1 is approximately 70 times more potent than AZQ. By using Western blot, both G2/M phase cell cycle arresting protein, cyclin B, and anti-apoptotic protein, bcl-2, were expressed in OEC-M1 cell when the concentrations of AZ-1 were increased from 0.125 to 0.5 microM and then decreased from 1 to 2 microM of AZ-1 treatment as compared with control for 24 h. Both proteins were expressed most abundantly at 0.5 microM AZ-1. However, the expression of bcl-2 protein in OEC-M1 was significantly decreasing in a dose-dependent manner and was only about 50% protein level at 2 microM AZ-1 for 48h as compared with control. The cell survival check protein p53 increased from 1.72- to 2.8-fold and 1.36- to 2.16-fold at concentrations of AZ-1 from 0.125 to 2.0 microM in a dose-dependently increasing manner on OEC-M1 as compared with control for 24 and48 h treatments, respectively. The apoptotic-related phenomena were observed, which included apoptotic body formation and the enzyme activity change of caspase-3. The apoptotic bodies and caspase-3 activity of OEC-M1 were induced only at 2 microM AZ-1 for a 24h treatment, yet apoptotic body formation was observed at as low as 0.5 microM AZ-1 and in a dose-dependently increasing manner for a 48 h treatment. The caspase-3 activity was increased 20.6%, 26.8%, and 84.2%, respectively, at 0.5, 1, and 2muM concentrations of AZ-1 for a 48 h treatment as compared with control. These results indicate that AZ-1 induced the cell death of OEC-M1 through the G2/M phase arrest of cell cycle and anti-apoptosis first and then apoptosis following a 48 h treatment. All of the pathway might be associated with bcl-2 and p53 protein expression. We propose that the AZ-1 could be used as anti-oral cancer drug for future studies with animal models.
Collapse
Affiliation(s)
- Yi-Chen Peng
- Department of Medicine, College of Medicine, Fu-Jen Catholic University, Taiwan, ROC
| | | | | | | | | |
Collapse
|
9
|
Abstract
[reaction: see text] This study describes the design and synthesis of a novel latent fluorophore 3 for DT diaphorase based on the trimethyl lock effect and characterization of its enzymatic kinetics. Fluorophore 3 is also a sensitive fluorimetric reagent for detecting glucose when coupled with DTD and glucose dehydrogenase.
Collapse
Affiliation(s)
- Sheng-Tung Huang
- College of Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan, ROC.
| | | |
Collapse
|