1
|
Qu JH, Horta S, Delport F, Sillen M, Geukens N, Sun DW, Vanhoorelbeke K, Declerck P, Lammertyn J, Spasic D. Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His 6-Tagged Bioreceptors for Applications in Complex Matrices. ACS Sens 2020; 5:960-969. [PMID: 32216277 DOI: 10.1021/acssensors.9b02227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cobalt-nitrilotriacetic acid (Co(III)-NTA) chemistry is a recognized approach for oriented patterning of His6-tagged bioreceptors. We have applied the matching strategy for the first time on a surface plasmon resonance (SPR) platform, namely, the commercialized fiber optic (FO)-SPR. To accomplish this, His6-tagged bioreceptor (scFv-33H1F7) and its target PAI-1 were used as a model system, after scrutinizing the specificity of their interaction. When benchmarked to traditional carboxyl-based self-assembled monolayers (SAM), NTA allowed (1) more efficient FO-SPR surface coverage with bioreceptors compared with the former and (2) realization of thus far difficult-to-attain label-free bioassays on the FO-SPR platform in both buffer and 20-fold diluted human plasma. Moreover, Co(III)-NTA surface proved to be compatible with traditional gold nanoparticle-mediated signal amplification in the buffer as well as in 10-fold diluted human plasma, thus expanding the dynamic detection range to low ng/mL. Both types of bioassays revealed that scFv-33H1F7 immobilized on the FO-SPR surface using different concentrations (20, 10, or 5 μg/mL) had no impact on the bioassay sensitivity, accuracy, or reproducibility despite the lowest concentration effectively resulting in close to 20% fewer bioreceptors. Collectively, these results highlight the importance of Co(III)-NTA promoting the oriented patterning of bioreceptors on the FO-SPR sensor surface for securing robust and sensitive bioassays in complex matrices, both in label-free and labeled formats.
Collapse
Affiliation(s)
- Jia-Huan Qu
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Filip Delport
- FOx Biosystems, Bioville, Agoralaan Abis, 3590 Diepenbeek, Belgium
| | - Machteld Sillen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Nick Geukens
- PharmAbs, KU Leuven, Herestraat 49,
Box 820, B 3000 Leuven, Belgium
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, 510641 Guangzhou, China
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Paul Declerck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Oriented Immobilization and Quantitative Analysis Simultaneously Realized in Sandwich Immunoassay via His-Tagged Nanobody. Molecules 2019; 24:molecules24101890. [PMID: 31100976 PMCID: PMC6572564 DOI: 10.3390/molecules24101890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/28/2023] Open
Abstract
Despite the advantages of the nanobody, the unique structure limits its use in sandwich immunoassay. In this study, a facile protocol of sandwich immunoassay using the nanobody was established. In brief, β amyloid and SH2, an anti-β amyloid nanobody, were used as capture antibody and antigen, respectively. The SH2 fused with His-tag was first purified and absorbed on Co2+-NTA functional matrix and then immobilized through H2O2 oxidation of Co2+ to Co3+ under the optimized conditions. Then, 150 mM imidazole and 20 mM EDTA were introduced to remove the unbound SH2. The immobilized SH2 showed highly-sensitive detection of β amyloid. It is interesting that the quantification of the sandwich immunoassay was carried out by determining the His-tag of the detection nanobody, without interference from the His-tag of the capture nanobody. The immobilized SH2 detached exhibited outstanding stability during 30 days of storage. Taken together, His6-tag facilitated both the oriented immobilization of capture antibody and quantitative assay of detection antibody in sandwich immunoassay. We propose a facile and efficient sandwich immunoassay method that opens new avenue to the study of His-tagged protein interactions.
Collapse
|
3
|
Bontempi N, Biavardi E, Bordiga D, Candiani G, Alessandri I, Bergese P, Dalcanale E. Probing lysine mono-methylation in histone H3 tail peptides with an abiotic receptor coupled to a non-plasmonic resonator. NANOSCALE 2017; 9:8639-8646. [PMID: 28608884 DOI: 10.1039/c7nr02491f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Binder and effector molecules that allow studying and manipulating epigenetic processes are of biological relevance and pose severe technical challenges. We report the first example of a synthetic receptor able to recognize mono-methylated lysines in a histone H3 tail peptide, which has relevant functions in epigenetic regulation. Recognition is robust and specific regardless of the position and the number of mono-methylated lysines along the polypeptide chain. The peptide is first captured in solution by a tetraphosphonate cavitand (Tiiii) that selectively binds its Lys-NMe+ moieties. Separation from solution and detection of the peptide-Tiiii complexes is then enabled in one single step by an all dielectric SiO2-TiO2 core-shell resonator (T-rex), which captures the complex and operates fully reproducible signal transduction by non-plasmonic surface enhanced Raman scattering (SERS) without degrading the complex. The realized abiotic probe is able to distinguish multiple mono-methylated peptides from the single mono-methylated ones.
Collapse
Affiliation(s)
- N Bontempi
- Department of Mechanical and Industrial Engineering, Chemistry for Technologies Laboratory, University of Brescia and INSTM UdR Brescia, Via Branze 38, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
4
|
Wegner SV, Schenk FC, Spatz JP. Cobalt(III)-Mediated Permanent and Stable Immobilization of Histidine-Tagged Proteins on NTA-Functionalized Surfaces. Chemistry 2016; 22:3156-62. [PMID: 26809102 DOI: 10.1002/chem.201504465] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 01/16/2023]
Abstract
We present the cobalt(III)-mediated interaction between polyhistidine (His)-tagged proteins and nitrilotriacetic acid (NTA)-modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well-established Co(2+) -mediated interaction between NTA and His-tagged proteins and subsequently oxidize the Co(2+) center in the complex to Co(3+) . Unlike conventionally used Ni(2+) - or Co(2+) -mediated immobilization, the resulting Co(3+) -mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co(3+) complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self-assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His-tagged proteins and materials with NTA groups make the Co(3+) -mediated interaction an attractive and widely applicable platform for protein immobilization.
Collapse
Affiliation(s)
- Seraphine V Wegner
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany. .,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany. .,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Franziska C Schenk
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569, Stuttgart, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
You C, Piehler J. Multivalent chelators for spatially and temporally controlled protein functionalization. Anal Bioanal Chem 2014; 406:3345-57. [DOI: 10.1007/s00216-014-7803-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
|
6
|
Bhagawati M, You C, Piehler J. Quantitative real-time imaging of protein-protein interactions by LSPR detection with micropatterned gold nanoparticles. Anal Chem 2013; 85:9564-71. [PMID: 24016060 DOI: 10.1021/ac401673e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Localized surface plasmon resonance (LSPR) offers powerful means for sensitive label-free detection of protein-protein interactions in a highly multiplexed format. We have here established self-assembly and surface modification of plasmonic nanostructures on solid support suitable for quantitative protein-protein interaction analysis by spectroscopic and microscopic LSPR detection. These architectures were obtained by layer-by-layer assembly via electrostatic attraction. Gold nanoparticles (AuNP) were adsorbed on a biocompatible amine-terminated poly(ethylene glycol) (PEG) polymer brush and further functionalized by poly-l-lysine graft PEG (PLL-PEG) copolymers. Stable yet reversible protein immobilization was achieved via tris(nitrilotriacetic acid) groups incorporated into the PLL-PEG coating. Thus, site-specific immobilization of His-tagged proteins via complexed Ni(II) ions was achieved. Functional protein immobilization on the surface was confirmed by real-time detection of LSPR scattering by reflectance spectroscopy. Association and dissociation rate constants obtained for a reversible protein-protein interaction were in good agreement with the data obtained by other surface-sensitive detection techniques. For spatially resolved detection, AuNP were assembled into micropatterns by means of photolithographic uncaging of surface amines. LSPR imaging of reversible protein-protein interactions was possible in a conventional wide field microscope, yielding detection limits of ∼30 protein molecules within a diffraction-limited surface area.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Department of Biology, University of Osnabrück , Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | |
Collapse
|
7
|
Wegner SV, Spatz JP. Cobalt(III) als stabiles und inertes Vermittlerion zwischen Nitrilotriessigsäure und Proteinen mit His6-Tag. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Wegner SV, Spatz JP. Cobalt(III) as a stable and inert mediator ion between NTA and His6-tagged proteins. Angew Chem Int Ed Engl 2013; 52:7593-6. [PMID: 23740821 PMCID: PMC3798096 DOI: 10.1002/anie.201210317] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/07/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Seraphine V Wegner
- Abt. Neue Materialieln und Biosysteme, Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, 70596, Stuttgart, Germany
| | | |
Collapse
|
9
|
Tan Y, Yildiz UH, Wei W, Waite JH, Miserez A. Layer-by-layer polyelectrolyte deposition: a mechanism for forming biocomposite materials. Biomacromolecules 2013; 14:1715-26. [PMID: 23600626 DOI: 10.1021/bm400448w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Complex coacervates prepared from poly(aspartic acid) (polyAsp) and poly-l-histidine (polyHis) were investigated as models of the metastable protein phases used in the formation of biological structures such as squid beak. When mixed, polyHis and polyAsp form coacervates whereas poly-l-glutamic acid (polyGlu) forms precipitates with polyHis. Layer-by-layer (LbL) structures of polyHis-polyAsp on gold substrates were compared with those of precipitate-forming polyHis-polyGlu by monitoring with iSPR and QCM-D. PolyHis-polyAsp LbL was found to be stiffer than polyHis-polyGlu LbL with most water evicted from the structure but with sufficient interfacial water remaining for molecular rearrangement to occur. This thin layer is believed to be fluid and like preformed coacervate films, capable of spreading over both hydrophilic ethylene glycol as well as hydrophobic monolayers. These results suggest that coacervate-forming polyelectrolytes deserve consideration for potential LbL applications and point to LbL as an important process by which biological materials form.
Collapse
Affiliation(s)
- Yerpeng Tan
- Biomolecular Science and Engineering Program, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | | | | | | | | |
Collapse
|
10
|
Gropeanu M, Bhagawati M, Gropeanu RA, Rodríguez Muñiz GM, Sundaram S, Piehler J, del Campo A. A versatile toolbox for multiplexed protein micropatterning by laser lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:838-845. [PMID: 23161760 DOI: 10.1002/smll.201201901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/05/2012] [Indexed: 06/01/2023]
Abstract
Photocleavable oligohistidine peptides (POHP) allow in situ spatial organization of multiple His-tagged proteins onto surfaces functionalized with tris(nitrilotriacetic acid) (tris-NTA). Here, a second generation of POHPs is presented with improved photoresponse and site-specific covalent coupling is introduced for generating stable protein assemblies. POHPs with different numbers of histidine residues and a photocleavable linker based on the 4,5-dimethoxy-o-nitrophenyl ethyl chromophore are prepared. These peptides show better photosensitivity than the previously used o-nitrophenyl ethyl derivative. Efficient and stable caging of tris-NTA-functionalized surfaces by POHPs comprising 12 histidine residues is demonstrated by multiparameter solid-phase detection techniques. Laser lithographic uncaging by photofragmentation of the POHPs is possible with substantially reduced photodamage as compared to previous approaches. Thus, in situ micropatterning of His-tagged proteins under physiological conditions is demonstrated for the first time. In combination with a short peptide tag for a site-specific enzymatic coupling reaction, covalent immobilization of multiple proteins into target micropatterns is possible under physiological conditions.
Collapse
|
11
|
Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf B Biointerfaces 2012; 103:510-6. [PMID: 23261574 DOI: 10.1016/j.colsurfb.2012.10.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
A facile method for assembly of biomimetic membranes serving as a platform for expression and insertion of membrane proteins is described. The membrane architecture was constructed in three steps: (i) assembly/printing of α-laminin peptide (P19) spacer on gold to separate solid support from the membrane architecture; (ii) covalent coupling of different lipid anchors to the P19 layer to serve as stabilizers of the inner leaflet during bilayer formation; (iii) lipid vesicle spreading to form a complete bilayer. Two different lipid membrane systems were examined and two different P19 architectures prepared by either self-assembly or μ-contact printing were tested and characterized using contact angle (CA) goniometry, surface plasmon resonance (SPR) spectroscopy and imaging surface plasmon resonance (iSPR). It is shown that surface coverage of cushion layer is significantly improved by μ-contact printing thereby facilitating bilayer formation as compared to self-assembly. To validate applicability of proposed methodology, incorporation of Cytochrome bo(3) ubiquinol oxidase (Cyt-bo(3)) into biomimetic membrane was performed by in vitro expression technique which was further monitored by surface plasmon enhanced fluorescence spectroscopy (SPFS). The results showed that solid supported planar membranes, tethered by α-laminin peptide cushion layer, provide an attractive environment for membrane protein insertion and characterization.
Collapse
|
12
|
Hansen MB, Verdurmen WPR, Leunissen EHP, Minten I, van Hest JCM, Brock R, Löwik DWPM. A Modular and Noncovalent Transduction System for Leucine-Zipper-Tagged Proteins. Chembiochem 2011; 12:2294-7. [DOI: 10.1002/cbic.201100481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Rakickas T, Ericsson EM, Ruželė Z, Liedberg B, Valiokas R. Functional hydrogel density patterns fabricated by dip-pen nanolithography and photografting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2153-2157. [PMID: 21626682 DOI: 10.1002/smll.201002278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/24/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Tomas Rakickas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
14
|
Propheter DC, Mahal LK. Orientation of GST-tagged lectins via in situ surface modification to create an expanded lectin microarray for glycomic analysis. MOLECULAR BIOSYSTEMS 2011; 7:2114-7. [PMID: 21597618 DOI: 10.1039/c1mb05047h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein we describe the orientation of GST-tagged lectins on NHS-activated slides via a one-step deposition of the protein and a glutathione (GSH) scaffold. This technology overcomes the need for a premade GSH-surface to orient GST-tagged proteins, enabling us to rapidly expand the analytical capacity of lectin microarrays through addition of oriented lectins, while maintaining lectin diversity.
Collapse
Affiliation(s)
- Daniel C Propheter
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0265, USA
| | | |
Collapse
|
15
|
Rendl M, Bönisch A, Mader A, Schuh K, Prucker O, Brandstetter T, Rühe J. Simple one-step process for immobilization of biomolecules on polymer substrates based on surface-attached polymer networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6116-23. [PMID: 21491877 DOI: 10.1021/la1050833] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For the miniaturization of biological assays, especially for the fabrication of microarrays, immobilization of biomolecules at the surfaces of the chips is the decisive factor. Accordingly, a variety of binding techniques have been developed over the years to immobilize DNA or proteins onto such substrates. Most of them require rather complex fabrication processes and sophisticated surface chemistry. Here, a comparatively simple immobilization technique is presented, which is based on the local generation of small spots of surface attached polymer networks. Immobilization is achieved in a one-step procedure: probe molecules are mixed with a photoactive copolymer in aqueous buffer, spotted onto a solid support, and cross-linked as well as bound to the substrate during brief flood exposure to UV light. The described procedure permits spatially confined surface functionalization and allows reliable binding of biological species to conventional substrates such as glass microscope slides as well as various types of plastic substrates with comparable performance. The latter also permits immobilization on structured, thermoformed substrates resulting in an all-plastic biochip platform, which is simple and cheap and seems to be promising for a variety of microdiagnostic applications.
Collapse
Affiliation(s)
- Martin Rendl
- Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, D-79110 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Gauglitz G. Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 2010; 398:2363-72. [DOI: 10.1007/s00216-010-3904-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/04/2010] [Accepted: 06/06/2010] [Indexed: 11/24/2022]
|
18
|
Waichman S, Bhagawati M, Podoplelova Y, Reichel A, Brunk A, Paterok D, Piehler J. Functional immobilization and patterning of proteins by an enzymatic transfer reaction. Anal Chem 2010; 82:1478-85. [PMID: 20092261 DOI: 10.1021/ac902608a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional immobilization and lateral organization of proteins into micro- and nanopatterns is an important prerequisite for miniaturizing bioanalytical and biotechnological devices. Here, we report an approach for efficient site-specific protein immobilization based on enzymatic phosphopantetheinyl transfer (PPT) from coenzyme A (CoA)-functionalized glass-type surfaces to specific peptide tags. We devised a bottom-up surface modification approach for coupling CoA densely to a molecular poly(ethylene glycol) polymer brush. Site-specific enzymatic immobilization of proteins fused to different target peptides for the PPTase Sfp was confirmed by real-time label-free detection. Quantitative protein-protein interaction experiments confirmed that significantly more than 50% of the immobilized protein was fully active. The method was successfully applied with different proteins. However, different immobilization efficiencies of PPT-based immobilization were observed for different peptide tags being fused to the N- and C-termini of proteins. On the basis of this immobilization method, we established photolithographic patterning of proteins into functional binary microstructures.
Collapse
Affiliation(s)
- Sharon Waichman
- Division of Biophysics, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Protein immobilization at gold–thiol surfaces and potential for biosensing. Anal Bioanal Chem 2010; 398:1545-64. [DOI: 10.1007/s00216-010-3708-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/14/2022]
|
20
|
|
21
|
Wu CC, Reinhoudt DN, Otto C, Velders AH, Subramaniam V. Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography. ACS NANO 2010; 4:1083-1091. [PMID: 20104881 DOI: 10.1021/nn901270c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An indirect method of protein patterning by using Ni(II) ion templates for immobilization via a specific metal-protein interaction is described. A nitrilotriacetic acid (NTA)-terminated self-assembled monolayer (SAM) allows oriented binding of histidine-tagged proteins via complexation with late first-row transition metal ions, such as Ni(II). Patterns of nickel(II) ions were prepared on NTA SAM-functionalized glass slides by microcontact printing (microCP) and dip-pen nanolithography (DPN) to obtain micrometer and submicrometer scale patterns. Consecutive dipping of the slides in 6His-protein solutions resulted in the formation of protein patterns, as was subsequently proven by AFM and confocal fluorescence microscopy. This indirect method prevents denaturation of fragile biomolecules caused by direct printing or writing of proteins. Moreover, it yields well-defined patterned monolayers of proteins and, in principle, is indifferent for biomolecules with a high molecular weight. This approach also enabled us to characterize the transfer of Ni(II) ions on fundamental parameters of DPN, such as writing speeds and tip-surface contact times, while writing with the smallest possible ink "molecules" (i.e., metal ions).
Collapse
|
22
|
Dunn JD, Reid GE, Bruening ML. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:29-54. [PMID: 19263479 DOI: 10.1002/mas.20219] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mass spectrometry is the tool of choice to investigate protein phosphorylation, which plays a vital role in cell regulation and diseases such as cancer. However, low abundances of phosphopeptides and low degrees of phosphorylation typically necessitate isolation and concentration of phosphopeptides prior to MS analysis. This review discusses the enrichment of phosphopeptides with immobilized metal affinity chromatography, reversible covalent binding, and metal oxide affinity chromatography. Capture of phosphopeptides on TiO(2) seems especially promising in terms of selectivity and recovery, but the success of all methods depends on careful selection of binding, washing, and elution solutions. Enrichment techniques are complementary, such that a combination of methods greatly enhances the number of phosphopeptides isolated from complex samples. Development of a standard series of phosphopeptides in a highly complex mixture of digested proteins would greatly aid the comparison of different enrichment methods. Phosphopeptide binding to magnetic beads and on-plate isolation prior to MALDI-MS are emerging as convenient methods for purification of small (microL) samples. On-plate enrichment can yield >70% recoveries of phosphopeptides in mixtures of a few digested proteins and can avoid sample-handling steps, but this technique is likely limited to relatively simple samples such as immunoprecipitates. With recent advances in enrichment techniques in hand, MS analysis should provide important insights into phosphorylation pathways.
Collapse
Affiliation(s)
- Jamie D Dunn
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
23
|
André T, Reichel A, Wiesmüller KH, Tampé R, Piehler J, Brock R. Selectivity of competitive multivalent interactions at interfaces. Chembiochem 2009; 10:1878-87. [PMID: 19565593 DOI: 10.1002/cbic.200900001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development of synthetic, low-molecular-weight ligand receptor systems for the selective control of biomolecular interactions remains a major challenge. Binding of oligohistidine peptides to chelators containing Ni2+-loaded nitrilotriacetic acid (NTA) moieties is one of the most widely used and best-characterised recognition systems. Recognition units containing multiple NTA moieties (multivalent chelator headgroups, MCHs) recognise oligohistidines with substantially increased binding affinities. Different multivalencies both at the level of the MCH and at that of the oligohistidine ligand provide a powerful means to vary the affinity of the interaction systematically. Here we have explored the selectivity for the binding of different oligohistidines to immobilised MCH. Using microarrays of mono-, bis-, tris- and tetrakis-NTA chelators spotted at different surface densities, we explored the ability of these binders to discriminate fluorescently labelled hexa- and decahistidine peptides. When hexa- and decahistidine were tested alone, the discrimination of ligands showed little dependence either on the nature or on the density of the chelator. In contrast, coincubation of both peptides decreased the affinity of hexahistidine, increased the affinity of decahistidine, and made the binding of decahistidine highly dependent on MCH density. Kinetic binding assays by dual-colour total internal reflection fluorescence spectroscopy revealed active exchange of His6 by His10 and confirmed the high selectivity towards His10. Our results establish the key role of surface multivalency for the selectivity of multivalent interactions at interfaces.
Collapse
Affiliation(s)
- Thomas André
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Affinity capturing for targeting proteins into micro and nanostructures. Anal Bioanal Chem 2009; 393:1563-70. [DOI: 10.1007/s00216-008-2595-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
25
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl 2008; 47:9618-47. [PMID: 19025742 DOI: 10.1002/anie.200801711] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein biochips are at the heart of many medical and bioanalytical applications. Increasing interest has been focused on surface activation and subsequent functionalization strategies for immobilizing these biomolecules. Different approaches using covalent and noncovalent chemistry are reviewed; particular emphasis is placed on the chemical specificity of protein attachment and on retention of protein function. Strategies for creating protein patterns (as opposed to protein arrays) are also outlined. An outlook on promising and challenging future directions for protein biochip research and applications is also offered.
Collapse
Affiliation(s)
- Pascal Jonkheijm
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology and Faculty of Chemistry, Chemical Biology, Technical University of Dortmund, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
26
|
Andersson O, Larsson A, Ekblad T, Liedberg B. Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study. Biomacromolecules 2008; 10:142-8. [DOI: 10.1021/bm801029b] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olof Andersson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Andréas Larsson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Tobias Ekblad
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Bo Liedberg
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
27
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer C, Waldmann H. Chemische Verfahren zur Herstellung von Proteinbiochips. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801711] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Rakickas T, Gavutis M, Reichel A, Piehler J, Liedberg B, Valiokas R. Protein-protein interactions in reversibly assembled nanopatterns. NANO LETTERS 2008; 8:3369-3375. [PMID: 18788824 DOI: 10.1021/nl801892m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe herein a platform to study protein-protein interactions and to form functional protein complexes in nanoscopic surface domains. For this purpose, we employed multivalent chelator (MCh) templates, which were fabricated in a stepwise procedure combining dip-pen nanolithography (DPN) and molecular recognition-directed assembly. First, we demonstrated that an atomic force microscope (AFM) tip inked with an oligo(ethylene glycol) (OEG) disulfide compound bearing terminal biotin groups can be used to generate biotin patterns on gold achieving line widths below 100 nm, a generic platform for fabrication of functional nanostructures via the highly specific biotin-streptavidin recognition. Subsequently, we converted such biotin/streptavidin patterns into functional MCh patterns for reversible assembly of histidine-tagged (His-tagged) proteins via the attachment of a tris-nitriloacetic acid (trisNTA) biotin derivative. Fluorescence microscopy confirmed reversible immobilization of the receptor subunit ifnar2-His10 and its interaction with interferon-alpha2 labeled with fluorescent quantum dots in a 7 x 7 dot array consisting of trisNTA spots with a diameter of approximately 230 nm. Moreover, we carried out characterization of the specificity, stability, and reversibility as well as quantitative real-time analysis of protein-protein interactions at the fabricated nanopatterns by imaging surface plasmon resonance. Our work offers a route for construction and analysis of functional protein-based nanoarchitectures.
Collapse
Affiliation(s)
- Tomas Rakickas
- Department of Functional Nanomaterials, Institute of Physics, Savanoriu 231, LT-02300 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
29
|
Addressable adsorption of lipid vesicles and subsequent protein interaction studies. Biointerphases 2008; 3:29. [DOI: 10.1116/1.2921867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Ludden M, Mulder A, Schulze K, Subramaniam V, Tampé R, Huskens J. Anchoring of Histidine-Tagged Proteins to Molecular Printboards: Self-assembly, Thermodynamic Modeling, and Patterning. Chemistry 2008; 14:2044-51. [DOI: 10.1002/chem.200701478] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Selective Chemical Labeling of Proteins with Small Fluorescent Molecules Based on Metal-Chelation Methodology. SENSORS 2008; 8:1004-1024. [PMID: 27879749 PMCID: PMC3927527 DOI: 10.3390/s8021004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/13/2008] [Indexed: 11/16/2022]
Abstract
Site-specific chemical labeling utilizing small fluorescent molecules is a powerful and attractive technique for in vivo and in vitro analysis of cellular proteins, which can circumvent some problems in genetic encoding labeling by large fluorescent proteins. In particular, affinity labeling based on metal-chelation, advantageous due to the high selectivity/simplicity and the small tag-size, is promising, as well as enzymatic covalent labeling, thereby a variety of novel methods have been studied in recent years. This review describes the advances in chemical labeling of proteins, especially highlighting the metal-chelation methodology.
Collapse
|
32
|
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108:462-93. [PMID: 18229953 DOI: 10.1021/cr068107d] [Citation(s) in RCA: 1772] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jirí Homola
- Institute of Photonics and Electronics ASCR, Chaberská 57, 182 51 Prague 8, Czech Republic.
| |
Collapse
|
33
|
Maury P, Escalante M, Péter M, Reinhoudt DN, Subramaniam V, Huskens J. Creating nanopatterns of His-tagged proteins on surfaces by nanoimprint lithography using specific NiNTA-histidine interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:1584-92. [PMID: 17647255 DOI: 10.1002/smll.200700046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Directed assembly of the DsRed FT protein is demonstrated on self-assembled monolayers (SAMs) on silicon substrates patterned by nanoimprint lithography. Initially, the DsRed protein is attached using electrostatic interactions on both topographical (polymer) templates with an amino functionalization and on chemically patterned (flat) substrates. In a second experiment, a patterned NiNTA SAM is used in order to attach the DsRed FT protein via supramolecular interactions, taking advantage of the histidine functionalization of the DsRed FT protein. The NTA SAM is formed on silicon oxide using a multistep covalent process. Patterning of the NTA SAM is performed using nanoimprint lithography. The DsRed FT protein is attached on the patterned NTA layer after treating this with a Ni(II) solution. Moreover, the histidine-NiNTA binding may be reversed by removing the Ni using EDTA or by competition using imidazole. The regeneration and reuse of the substrate by subsequently attaching and removing two different histidine-functionalized proteins from the patterned NTA is shown by fluorescence microscopy.
Collapse
Affiliation(s)
- Pascale Maury
- Molecular Nanofabrication & Supramolecular Chemistry and Technology Groups, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|