1
|
Fan PH, Sato S, Yeh YC, Liu HW. Biosynthetic Origin of the Octose Core and Its Mechanism of Assembly during Apramycin Biosynthesis. J Am Chem Soc 2023; 145:21361-21369. [PMID: 37733880 PMCID: PMC10591738 DOI: 10.1021/jacs.3c06354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Apramycin is an aminoglycoside antibiotic isolated from Streptoalloteichus tenebrarius and S. hindustanus that has found clinical use in veterinary medicine. The apramycin structure is notable for its atypical eight-carbon bicyclic dialdose (octose) moiety. While the apramycin biosynthetic gene cluster (apr) has been identified and several of the encoded genes functionally characterized, how the octose core itself is assembled has remained elusive. Nevertheless, recent gene deletion studies have hinted at an N-acetyl aminosugar being a key precursor to the octose, and this hypothesis is consistent with the additional feeding experiments described in the present report. Moreover, bioinformatic analysis indicates that AprG may be structurally similar to GlcNAc-2-epimerase and hence recognize GlcNAc or a structurally similar substrate suggesting a potential role in octose formation. AprG with an extended N-terminal sequence was therefore expressed, purified, and assayed in vitro demonstrating that it does indeed catalyze a transaldolation reaction between GlcNAc or GalNAc and 6'-oxo-lividamine to afford 7'-N-acetyldemethylaprosamine with the same 6'-R and 7'-S stereochemistry as those observed in the apramycin product. Biosynthesis of the octose core in apramycin thus proceeds in the [6 + 2] manner with GlcNAc or GalNAc as the two-carbon donor, which has not been previously reported for biological octose formation, as well as novel inverting stereochemistry of the transferred fragment. Consequently, AprG appears to be a new transaldolase that lacks any apparent sequence similarity to the currently known aldolases and catalyzes a transaldolation for which there is no established biological precedent.
Collapse
Affiliation(s)
- Po-Hsun Fan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shusuke Sato
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Cheng Yeh
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Dong X, Qi S, Khan IM, Sun Y, Zhang Y, Wang Z. Advances in riboswitch-based biosensor as food samples detection tool. Compr Rev Food Sci Food Saf 2023; 22:451-472. [PMID: 36511082 DOI: 10.1111/1541-4337.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu Province, Food, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Stojanovski G, Hailes HC, Ward JM. Facile and selective N-alkylation of gentamicin antibiotics via chemoenzymatic synthesis. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:9542-9551. [PMID: 36544494 PMCID: PMC9744104 DOI: 10.1039/d2gc03600b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The rise and spread of antimicrobial resistance has necessitated the development of novel antimicrobials which are effective against drug resistant pathogens. Aminoglycoside antibiotics (AGAs) remain one of our most effective classes of bactericidal drugs. However, they are challenging molecules to selectively modify by chemical synthesis, requiring the use of extensive protection and deprotection steps leading to long, atom- and step-inefficient synthetic routes. Biocatalytic and chemoenzymatic approaches for the generation of AGA derivatives are of interest as they allow access to more concise and sustainable synthetic routes to novel compounds. This work presents a two-step chemoenzymatic route to regioselectively modify the C-6' position of AGAs. The approach uses a transaminase enzyme to generate an aldehyde on the C-6' position in the absence of protecting groups, followed by reductive amination to introduce substituents selectively on this position. Seven candidate transaminases were tested for their ability to deaminate a panel of commercially available AGAs. The C-6' transaminases could deaminate both pseudo di- and trisaccharide AGAs and tolerate the presence or absence of hydroxyl groups on the C-3'- and C-4'-positions. Additionally, sugar substituents on the C-6 hydroxyl were accepted but not on the C-5 hydroxyl. The most promising enzyme, GenB4, was then coupled with a reductive amination step to synthesise eleven novel 6'-gentamicin C1a analogues with conversions of 13-90%. Five of these compounds were active antimicrobials and four of these retained activity against an aminoglycoside-resistant Escherichia coli. This approach allows facile and step-efficient access to novel aminoglycoside compounds under mild reaction conditions and could potentially enable the development of greener, sustainable, and more cost-effective syntheses of novel AGAs.
Collapse
Affiliation(s)
- Gorjan Stojanovski
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - John M Ward
- Department of Biochemical Engineering, University College London London WC1E 6BT UK
| |
Collapse
|
4
|
Huang Y, Han X, Yu X, Wang S, Zhai H. Capillary Electrophoresis-Indirect Laser-Induced Fluorescence Detection of Neomycin in Fish. Chromatographia 2021. [DOI: 10.1007/s10337-021-04075-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Wang J, Ma S, Ding W, Chen T, Zhang Q. Mechanistic Study of Oxidoreductase
AprQ
Involved in Biosynthesis of Aminoglycoside Antibiotic Apramycin. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinxiu Wang
- State Key Laboratory of Cryospheric Science, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou Gansu 730000 China
- Department of Chemistry, Fudan University Shanghai 200433 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Suze Ma
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
6
|
Kudo F, Kitayama Y, Miyanaga A, Numakura M, Eguchi T. Stepwise Post-glycosylation Modification of Sugar Moieties in Kanamycin Biosynthesis. Chembiochem 2021; 22:1668-1675. [PMID: 33403742 DOI: 10.1002/cbic.202000839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/05/2021] [Indexed: 11/07/2022]
Abstract
Kanamycin A is the major 2-deoxystreptamine (2DOS)-containing aminoglycoside antibiotic produced by Streptomyces kanamyceticus. The 2DOS moiety is linked with 6-amino-6-deoxy-d-glucose (6ADG) at O-4 and 3-amino-3-deoxy-d-glucose at O-6. Because the 6ADG moiety is derived from d-glucosamine (GlcN), deamination at C-2 and introduction of C-6-NH2 are required in the biosynthesis. A dehydrogenase, KanQ, and an aminotransferase, KanB, are presumed to be responsible for the introduction of C-6-NH2 , although the substrates have not been identified. Here, we examined the substrate specificity of KanQ to better understand the biosynthetic pathway. It was found that KanQ oxidized kanamycin C more efficiently than the 3''-deamino derivative. Furthermore, the substrate specificity of an oxygenase, KanJ, that is responsible for deamination at C-2 of the GlcN moiety was examined, and the crystal structure of KanJ was determined. It was found that C-6-NH2 is important for substrate recognition by KanJ. Thus, the modification of the GlcN moiety occurs after pseudo-trisaccharide formation, followed by the introduction of C-6-NH2 by KanQ/KanB and deamination at C-2 by KanJ.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yukinobu Kitayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Mario Numakura
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
7
|
Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Appl Microbiol Biotechnol 2019; 103:2263-2275. [DOI: 10.1007/s00253-018-09597-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023]
|
8
|
Dow GT, Thoden JB, Holden HM. The three-dimensional structure of NeoB: An aminotransferase involved in the biosynthesis of neomycin. Protein Sci 2018. [PMID: 29516565 DOI: 10.1002/pro.3400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aminoglycoside antibiotics, discovered as natural products in the 1940s, demonstrate a broad antimicrobial spectrum. Due to their nephrotoxic and ototoxic side effects, however, their widespread clinical usage has typically been limited to the treatment of serious infections. Neomycin B, first isolated from strains of Streptomyces in 1948, is one such drug that was approved for human use by the U.S. Food and Drug Administration in 1964. Only within the last 11 years has the biochemical pathway for its production been elaborated, however. Here we present the three-dimensional architecture of NeoB from Streptomyces fradiae, which is a pyridoxal 5'-phosphate or PLP-dependent aminotransferase that functions on two different substrates in neomycin B biosynthesis. For this investigation, four high resolution X-ray structures of NeoB were determined in various complexed states. The overall fold of NeoB is that typically observed for members of the "aspartate aminotransferase" family with the exception of an additional three-stranded antiparallel β-sheet that forms part of the subunit-subunit interface of the dimer. The manner in which the active site of NeoB accommodates quite different substrates has been defined by this investigation. In addition, during the course of this study, we also determined the structure of the aminotransferase GenB1 to high resolution. GenB1 functions as an aminotransferase in gentamicin biosynthesis. Taken together, the structures of NeoB and GenB1, presented here, provide the first detailed descriptions of aminotransferases that specifically function on aldehyde moieties in aminoglycoside biosynthesis.
Collapse
Affiliation(s)
- Garrett T Dow
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706
| |
Collapse
|
9
|
Lv M, Ji X, Zhao J, Li Y, Zhang C, Su L, Ding W, Deng Z, Yu Y, Zhang Q. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis. J Am Chem Soc 2016; 138:6427-35. [PMID: 27120352 DOI: 10.1021/jacs.6b02221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.
Collapse
Affiliation(s)
- Meinan Lv
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Junfeng Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China.,Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Chen Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Li Su
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Wei Ding
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Qi Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| |
Collapse
|
10
|
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q, Zhang G, Zhu W, Liu J, Zhang C. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol 2016; 11:943-52. [PMID: 26714051 DOI: 10.1021/acschembio.5b00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinxin Xu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangui Mei
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhan Feng
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liping Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guangtao Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinsong Liu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
11
|
Biosynthesis of 3″-demethyl-gentamicin C components by gen N disruption strain of Micromonospora echinospora and test their antimicrobial activities in vitro. Microbiol Res 2016; 185:36-44. [DOI: 10.1016/j.micres.2016.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 11/21/2022]
|
12
|
Kudo F, Eguchi T. Aminoglycoside Antibiotics: New Insights into the Biosynthetic Machinery of Old Drugs. CHEM REC 2015; 16:4-18. [PMID: 26455715 DOI: 10.1002/tcr.201500210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Indexed: 11/07/2022]
Abstract
2-Deoxystreptamine (2DOS) is the unique chemically stable aminocyclitol scaffold of clinically important aminoglycoside antibiotics such as neomycin, kanamycin, and gentamicin, which are produced by Actinomycetes. The 2DOS core can be decorated with various deoxyaminosugars to make structurally diverse pseudo-oligosaccharides. After the discovery of biosynthetic gene clusters for 2DOS-containing aminoglycoside antibiotics, the function of each biosynthetic enzyme has been extensively elucidated. The common biosynthetic intermediates 2DOS, paromamine and ribostamycin are constructed by conserved enzymes encoded in the gene clusters. The biosynthetic intermediates are then converted to characteristic architectures by unique enzymes encoded in each biosynthetic gene cluster. In this Personal Account, we summarize both common biosynthetic pathways and the pathways used for structural diversification.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
13
|
Gu Y, Ni X, Ren J, Gao H, Wang D, Xia H. Biosynthesis of Epimers C2 and C2a in the Gentamicin C Complex. Chembiochem 2015; 16:1933-1942. [DOI: 10.1002/cbic.201500258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/09/2022]
|
14
|
Huang C, Huang F, Moison E, Guo J, Jian X, Duan X, Deng Z, Leadlay PF, Sun Y. Delineating the biosynthesis of gentamicin x2, the common precursor of the gentamicin C antibiotic complex. ACTA ACUST UNITED AC 2015; 22:251-61. [PMID: 25641167 PMCID: PMC4340712 DOI: 10.1016/j.chembiol.2014.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 11/24/2022]
Abstract
Gentamicin C complex is a mixture of aminoglycoside antibiotics used worldwide to treat severe Gram-negative bacterial infections. Despite its clinical importance, the enzymology of its biosynthetic pathway has remained obscure. We report here insights into the four enzyme-catalyzed steps that lead from the first-formed pseudotrisaccharide gentamicin A2 to gentamicin X2, the last common intermediate for all components of the C complex. We have used both targeted mutations of individual genes and reconstitution of portions of the pathway in vitro to show that the secondary alcohol function at C-3″ of A2 is first converted to an amine, catalyzed by the tandem operation of oxidoreductase GenD2 and transaminase GenS2. The amine is then specifically methylated by the S-adenosyl-l-methionine (SAM)-dependent N-methyltransferase GenN to form gentamicin A. Finally, C-methylation at C-4″ to form gentamicin X2 is catalyzed by the radical SAM-dependent and cobalamin-dependent enzyme GenD1.
Collapse
Affiliation(s)
- Chuan Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Eileen Moison
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Junhong Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Xinyun Jian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Xiaobo Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China.
| |
Collapse
|
15
|
Takeishi R, Kudo F, Numakura M, Eguchi T. Epimerization at C-3'' in butirosin biosynthesis by an NAD(+) -dependent dehydrogenase BtrE and an NADPH-dependent reductase BtrF. Chembiochem 2015; 16:487-95. [PMID: 25600434 DOI: 10.1002/cbic.201402612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/11/2022]
Abstract
Butirosin is an aminoglycoside antibiotic consisting two epimers at C-3'' of ribostamycin/xylostasin with a unique 4-amino-2-hydroxybutyrate moiety at C-1 of the aminocyclitol 2-deoxystreptamine (2DOS). To date, most of the enzymes encoded in the biosynthetic gene cluster for butirosin, from the producing strain Bacillus circulans, have been characterized. A few unknown functional proteins, including nicotinamide adenine dinucleotide cofactor-dependent dehydrogenase/reductase (BtrE and BtrF), are supposed to be involved in the epimerization at C-3'' of butirosin B/ribostamycin but remain to be characterized. Herein, the conversion of ribostamycin to xylsostasin by BtrE and BtrF in the presence of NAD(+) and NADPH was demonstrated. BtrE oxidized the C-3'' of ribostamycin with NAD(+) to yield 3''-oxoribostamycin. BtrF then reduced the generated 3''-oxoribostamycin with NADPH to produce xylostasin. This reaction step was the last piece of butirosin biosynthesis to be described.
Collapse
Affiliation(s)
- Ryohei Takeishi
- Department of Chemistry, Tokyo Institute of Technology, Okayama, Meguro-ku, Tokyo 152-8551 (Japan)
| | | | | | | |
Collapse
|
16
|
Steffen-Munsberg F, Vickers C, Kohls H, Land H, Mallin H, Nobili A, Skalden L, van den Bergh T, Joosten HJ, Berglund P, Höhne M, Bornscheuer UT. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv 2015; 33:566-604. [PMID: 25575689 DOI: 10.1016/j.biotechadv.2014.12.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/25/2023]
Abstract
In this review we analyse structure/sequence-function relationships for the superfamily of PLP-dependent enzymes with special emphasis on class III transaminases. Amine transaminases are highly important for applications in biocatalysis in the synthesis of chiral amines. In addition, other enzyme activities such as racemases or decarboxylases are also discussed. The substrate scope and the ability to accept chemically different types of substrates are shown to be reflected in conserved patterns of amino acids around the active site. These findings are condensed in a sequence-function matrix, which facilitates annotation and identification of biocatalytically relevant enzymes and protein engineering thereof.
Collapse
Affiliation(s)
- Fabian Steffen-Munsberg
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Clare Vickers
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Hannes Kohls
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; Protein Biochemistry, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Henrik Land
- KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Hendrik Mallin
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Alberto Nobili
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Lilly Skalden
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Tom van den Bergh
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Per Berglund
- KTH Royal Institute of Technology, School of Biotechnology, Division of Industrial Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Matthias Höhne
- Protein Biochemistry, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| |
Collapse
|
17
|
Kudo F, Hoshi S, Kawashima T, Kamachi T, Eguchi T. Characterization of a Radical S-Adenosyl-l-methionine Epimerase, NeoN, in the Last Step of Neomycin B Biosynthesis. J Am Chem Soc 2014; 136:13909-15. [DOI: 10.1021/ja507759f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, ‡Department of Chemistry and Materials Science, and §Department of
Bioengineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shota Hoshi
- Department of Chemistry, ‡Department of Chemistry and Materials Science, and §Department of
Bioengineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Taiki Kawashima
- Department of Chemistry, ‡Department of Chemistry and Materials Science, and §Department of
Bioengineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Toshiaki Kamachi
- Department of Chemistry, ‡Department of Chemistry and Materials Science, and §Department of
Bioengineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, ‡Department of Chemistry and Materials Science, and §Department of
Bioengineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
18
|
Ni X, Sun Z, Zhang H, He H, Ji Z, Xia H. Genetic engineering combined with random mutagenesis to enhance G418 production in Micromonospora echinospora. ACTA ACUST UNITED AC 2014; 41:1383-90. [DOI: 10.1007/s10295-014-1479-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Abstract
G418, produced by fermentation of Micromonospora echinospora, is an aminoglycoside antibiotic commonly used in genetic selection and maintenance of eukaryotic cells. Besides G418, M. echinospora produces many G418 analogs. As a result, the G418 product always contains impurities such as gentamicin C1, C1a, C2, C2a, gentamicin A and gentamicin X2. These impurities are less potent but more toxic than G418, but the purification of G418 is difficult because it has similar properties to its impurities. G418 is an intermediate in the gentamicin biosynthesis pathway. From G418 the pathway proceeds via successive dehydrogenation and aminotransferation at the C-6′ position to generate the gentamicin C complex, but genes responsible for these steps are still obscure. Through disruption of gacJ, which is deduced to encode a C-6′ dehydrogenase, the biosynthetic impurities gentamicin C1, C1a, C2 and C2a were all removed, and G418 became the main product of the gacJ disruption strain. These results demonstrated that gacJ is in charge of conversion of the 6′-OH of G418 into 6′-NH2. Disruption of gacJ not only eliminates the impurities seen in the original strain but also improves G418 titers by 15-fold. G418 production was further improved by 26.6 % through traditional random mutagenesis. Through the use of combined traditional and recombinant genetic techniques, we produced a strain from which most impurities were removed and G418 production was improved by 19 fold.
Collapse
Affiliation(s)
- Xianpu Ni
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Zhenpeng Sun
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Hongyu Zhang
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Han He
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Zhouxiang Ji
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| | - Huanzhang Xia
- grid.412561.5 0000000086454345 School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University 110016 Shenyang Liaoning China
| |
Collapse
|
19
|
Guo J, Huang F, Huang C, Duan X, Jian X, Leeper F, Deng Z, Leadlay PF, Sun Y. Specificity and promiscuity at the branch point in gentamicin biosynthesis. ACTA ACUST UNITED AC 2014; 21:608-18. [PMID: 24746560 PMCID: PMC4039129 DOI: 10.1016/j.chembiol.2014.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Abstract
Gentamicin C complex is a mixture of aminoglycoside antibiotics used to treat severe Gram-negative bacterial infections. We report here key features of the late-stage biosynthesis of gentamicins. We show that the intermediate gentamicin X2, a known substrate for C-methylation at C-6' to form G418 catalyzed by the radical SAM-dependent enzyme GenK, may instead undergo oxidation at C-6' to form an aldehyde, catalyzed by the flavin-linked dehydrogenase GenQ. Surprisingly, GenQ acts in both branches of the pathway, likewise oxidizing G418 to an analogous ketone. Amination of these intermediates, catalyzed mainly by aminotransferase GenB1, produces the known intermediates JI-20A and JI-20B, respectively. Other pyridoxal phosphate-dependent enzymes (GenB3 and GenB4) act in enigmatic dehydroxylation steps that convert JI-20A and JI-20B into the gentamicin C complex or (GenB2) catalyze the epimerization of gentamicin C2a into gentamicin C2.
Collapse
Affiliation(s)
- Junhong Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Chuan Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Xiaobo Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Xinyun Jian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Finian Leeper
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, Wuchang 430071, People's Republic of China.
| |
Collapse
|
20
|
Lin CI, McCarty RM, Liu HW. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars. Chem Soc Rev 2013; 42:4377-407. [PMID: 23348524 PMCID: PMC3641179 DOI: 10.1039/c2cs35438a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.
Collapse
Affiliation(s)
| | | | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712
| |
Collapse
|
21
|
Park SR, Park JW, Ban YH, Sohng JK, Yoon YJ. 2-Deoxystreptamine-containing aminoglycoside antibiotics: Recent advances in the characterization and manipulation of their biosynthetic pathways. Nat Prod Rep 2013. [DOI: 10.1039/c2np20092a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol 2011; 7:843-52. [PMID: 21983602 DOI: 10.1038/nchembio.671] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 07/28/2011] [Indexed: 11/08/2022]
Abstract
Kanamycin is one of the most widely used antibiotics, yet its biosynthetic pathway remains unclear. Current proposals suggest that the kanamycin biosynthetic products are linearly related via single enzymatic transformations. To explore this system, we have reconstructed the entire biosynthetic pathway through the heterologous expression of combinations of putative biosynthetic genes from Streptomyces kanamyceticus in the non-aminoglycoside-producing Streptomyces venezuelae. Unexpectedly, we discovered that the biosynthetic pathway contains an early branch point, governed by the substrate promiscuity of a glycosyltransferase, that leads to the formation of two parallel pathways in which early intermediates are further modified. Glycosyltransferase exchange can alter flux through these two parallel pathways, and the addition of other biosynthetic enzymes can be used to synthesize known and new highly active antibiotics. These results complete our understanding of kanamycin biosynthesis and demonstrate the potential of pathway engineering for direct in vivo production of clinically useful antibiotics and more robust aminoglycosides.
Collapse
|
23
|
Clausnitzer D, Piepersberg W, Wehmeier U. The oxidoreductases LivQ and NeoQ are responsible for the different 6′-modifications in the aminoglycosides lividomycin and neomycin. J Appl Microbiol 2011; 111:642-51. [DOI: 10.1111/j.1365-2672.2011.05082.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Biosynthesis of Ribostamycin Derivatives by Reconstitution and Heterologous Expression of Required Gene Sets. Appl Biochem Biotechnol 2010; 163:373-82. [DOI: 10.1007/s12010-010-9045-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
25
|
Enzymatic activity of a glycosyltransferase KanM2 encoded in the kanamycin biosynthetic gene cluster. J Antibiot (Tokyo) 2009; 62:707-10. [PMID: 19911031 DOI: 10.1038/ja.2009.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
|
27
|
Abstract
Biosynthetic studies of aminoglycoside antibiotics have progressed remarkably during the last decade. Many biosynthetic gene clusters for aminoglycoside antibiotics including streptomycin, kanamycin, butirosin, neomycin and gentamicin have been identified to date. In addition, most butirosin and neomycin biosynthetic enzymes have been functionally characterized using recombinant proteins. Herein, we reanalyze biosynthetic genes for structurally related 2-deoxystreptamine (2DOS)-containing aminoglycosides, such as kanamycin, gentamicin and istamycin, based on genetic information including characterized biosynthetic enzymes in neomycin and butirosin biosynthetic pathways. These proposed enzymatic functions for uncharacterized enzymes are expected to support investigation of the complex biosynthetic pathways for this important class of antibiotics.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | |
Collapse
|
28
|
Mahmud T. Progress in aminocyclitol biosynthesis. Curr Opin Chem Biol 2009; 13:161-70. [PMID: 19321377 DOI: 10.1016/j.cbpa.2009.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/16/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
A stream of genetic and biochemical information available for the biosynthesis of aminocyclitols over the past few years has provided the foundation to study the modes of formation of this clinically important class of natural products. In addition to work on the identification and functional analysis of aminocyclitol biosynthetic gene clusters, a contingent of recent studies has focused on the detailed analysis of unique enzymatic and catalytic mechanisms inherent to these pathways. The results provide invaluable insights into the biochemical and molecular aspects of aminocyclitol biosynthesis and have revealed diverse and unique features of the pathways.
Collapse
Affiliation(s)
- Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507, USA.
| |
Collapse
|
29
|
Abstract
Butirosin and neomycin belong to a family of clinically valuable 2-deoxystreptamine (2DOS)-containing aminoglycoside antibiotics. The biosynthetic gene clusters for butirosin and neomycin were identified in 2000 and in 2005, respectively. In recent years, most of the enzymes encoded in the gene clusters have been characterized, and thus almost all the biosynthetic steps leading to the final antibiotics have been understood. This knowledge could shed light on the complex biosynthetic pathways for other related structurally diverse aminoglycoside antibiotics. In this chapter, the enzymatic reactions in the biosynthesis of butirosin and neomycin are reviewed step by step.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | | |
Collapse
|
30
|
Braun SD, Völksch B, Nüske J, Spiteller D. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem 2008; 9:1913-20. [PMID: 18655083 DOI: 10.1002/cbic.200800080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Indexed: 11/10/2022]
Abstract
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.
Collapse
Affiliation(s)
- Sascha D Braun
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, Neugasse 25, 07743 Jena, Germany
| | | | | | | |
Collapse
|
31
|
Park JW, Hong JSJ, Parajuli N, Jung WS, Park SR, Lim SK, Sohng JK, Yoon YJ. Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proc Natl Acad Sci U S A 2008; 105:8399-404. [PMID: 18550838 PMCID: PMC2448848 DOI: 10.1073/pnas.0803164105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Indexed: 11/18/2022] Open
Abstract
Since the first use of streptomycin as an effective antibiotic drug in the treatment of tuberculosis, aminoglycoside antibiotics have been widely used against a variety of bacterial infections for over six decades. However, the pathways for aminoglycoside biosynthesis still remain unclear, mainly because of difficulty in genetic manipulation of actinomycetes producing this class of antibiotics. Gentamicin belongs to the group of 4,6-disubstituted aminoglycosides containing a characteristic core aminocyclitol moiety, 2-deoxystreptamine (2-DOS), and the recent discovery of its biosynthetic gene cluster in Micromonospora echinospora has enabled us to decipher its biosynthetic pathway. To determine the minimal set of genes and their functions for the generation of gentamicin A(2), the first pseudotrisaccharide intermediate in the biosynthetic pathway for the gentamicin complex, various sets of candidate genes from M. echinospora and other related aminoglycoside-producing strains were introduced into a nonaminoglycoside producing strain of Streptomyces venezuelae. Heterologous expression of different combinations of putative 2-DOS biosynthetic genes revealed that a subset, gtmB-gtmA-gacH, is responsible for the biosynthesis of this core aminocyclitol moiety of gentamicin. Expression of gtmG together with gtmB-gtmA-gacH led to production of 2'-N-acetylparomamine, demonstrating that GtmG acts as a glycosyltransferase that adds N-acetyl-d-glucosamine (GLcNA) to 2-DOS. Expression of gtmM in a 2'-N-acetylparomamine-producing recombinant S. venezuelae strain generated paromamine. Expression of gtmE in an engineered paromamine-producing strain of S. venezuelae successfully generated gentamicin A(2), indicating that GtmE is another glycosyltransferase that attaches d-xylose to paromamine. These results represent in vivo evidence elucidating the complete biosynthetic pathway of the pseudotrisaccharide aminoglycoside.
Collapse
Affiliation(s)
- Je Won Park
- Division of Nano Sciences, Ewha Womans University, 11-1 Daehyung-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jay Sung Joong Hong
- Interdisciplinary Program of Biochemical Engineering and Biotechnology, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Niranjan Parajuli
- Division of Nano Sciences, Ewha Womans University, 11-1 Daehyung-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Won Seok Jung
- Interdisciplinary Program of Biochemical Engineering and Biotechnology, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sung Ryeol Park
- Division of Nano Sciences, Ewha Womans University, 11-1 Daehyung-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Si-Kyu Lim
- Genotech Corporations, 59-5 Jang-dong, Usung-gu, Daejon 305-343, Republic of Korea; and
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, 100 Kalsanri, Tangjeonmyun, Asansi, Chungnam 336-708, Republic of Korea
| | - Yeo Joon Yoon
- Division of Nano Sciences, Ewha Womans University, 11-1 Daehyung-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| |
Collapse
|
32
|
Yokoyama K, Yamamoto Y, Kudo F, Eguchi T. Involvement of Two DistinctN-Acetylglucosaminyltransferases and a Dual-Function Deacetylase in Neomycin Biosynthesis. Chembiochem 2008; 9:865-9. [DOI: 10.1002/cbic.200700717] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Kudo F, Kasama Y, Hirayama T, Eguchi T. Cloning of the Pactamycin Biosynthetic Gene Cluster and Characterization of a Crucial Glycosyltransferase Prior to a Unique Cyclopentane Ring Formation. J Antibiot (Tokyo) 2007; 60:492-503. [PMID: 17827660 DOI: 10.1038/ja.2007.63] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biosynthetic gene (pct) cluster for an antitumor antibiotic pactamycin was identified by use of a gene for putative radical S-adenosylmethionine methyltransferase as a probe. The pct gene cluster is localized to a 34 kb contiguous DNA from Streptomyces pactum NBRC 13433 and contains 24 open reading frames. Based on the bioinformatic analysis, a plausible biosynthetic pathway for pactamycin comprising of a unique cyclopentane ring, 3-aminoacetophenone, and 6-methylsalicylate was proposed. The pctL gene encoding a glycosyltransferase was speculated to be involved in an N-glycoside formation between 3-aminoacetophenone and UDP-N-acetyl-alpha-D-glucosamine prior to a unique cyclopentane ring formation. The pctL gene was then heterologously expressed in Escherichia coli and the enzymatic activity of the recombinant PctL protein was investigated. Consequently, the PctL protein was found to catalyze the expected reaction forming beta-N-glycoside. The enzymatic activity of the PctL protein clearly confirmed that the present identified gene cluster is for the biosynthesis of pactamycin. Also, a glycosylation prior to cyclopentane ring formation was proposed to be a general strategy in the biosynthesis of the structurally related cyclopentane containing compounds.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | |
Collapse
|