1
|
Wagner AM, Warner JB, Garrett HE, Walters CR, Petersson EJ. Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles. Methods Mol Biol 2023; 2620:157-175. [PMID: 37010762 DOI: 10.1007/978-1-0716-2942-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.
Collapse
Affiliation(s)
- Anne M Wagner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - John B Warner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Haviva E Garrett
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Polyak D, Krauss IJ. An Optimized Synthesis of Fmoc-l-Homopropargylglycine-OH. J Org Chem 2022; 87:3841-3844. [PMID: 35133817 DOI: 10.1021/acs.joc.1c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient multigram synthesis of alkynyl amino acid Fmoc-l-homopropargylglycine-OH is described. A double Boc protection is optimized for high material throughput, and the key Seyferth-Gilbert homologation is optimized to avoid racemization. Eighteen grams of the enantiopure (>98% ee) noncanonical amino acid was readily generated for use in solid phase synthesis to make peptides that can be functionalized by copper-assisted alkyne-azide cycloaddition.
Collapse
Affiliation(s)
- Daniel Polyak
- Department of Chemistry, Brandeis University, MS 015, Waltham, Massachusetts 02454-9110, United States
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, MS 015, Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|
3
|
Wang YJ, Szantai-Kis DM, Petersson EJ. Chemoselective modifications for the traceless ligation of thioamide-containing peptides and proteins. Org Biomol Chem 2016; 14:6262-9. [PMID: 27264841 DOI: 10.1039/c6ob01020b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thioamides are single-atom substitutions of canonical amide bonds, and have been proven to be versatile and minimally perturbing probes in protein folding studies. Previously, our group showed that thioamides can be incorporated into proteins by native chemical ligation (NCL) with Cys as a ligation handle. In this study, we report the expansion of this strategy into non-Cys ligation sites, utilizing radical initiated desulfurization to "erase" the side chain thiol after ligation. The reaction exhibited high chemoselectivity against thioamides, which can be further enhanced with thioacetamide as a sacrificial scavenger. As a proof-of-concept example, we demonstrated the incorporation of a thioamide probe into a 56 amino acid protein, the B1 domain of Protein G (GB1). Finally, we showed that the method can be extended to β-thiol amino acid analogs and selenocysteine.
Collapse
Affiliation(s)
- Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
4
|
Wagner AM, Warner JB, Garrett HE, Walters CR, Petersson EJ. Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles. Methods Mol Biol 2016; 1337:109-27. [PMID: 26285888 DOI: 10.1007/978-1-4939-2935-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This method can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.
Collapse
Affiliation(s)
- Anne M Wagner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323, USA
| | | | | | | | | |
Collapse
|
5
|
Wang YJ, Szantai-Kis DM, Petersson EJ. Semi-synthesis of thioamide containing proteins. Org Biomol Chem 2016; 13:5074-81. [PMID: 25811732 DOI: 10.1039/c5ob00224a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our laboratory has shown that the thioamide, a single atom O-to-S substitution, can be a versatile fluorescence quenching probe that is minimally-perturbing when placed at many locations in a protein sequence. In order to make these and other thioamide experiments applicable to full-sized proteins, we have developed methods for incorporating thioamides by generating thiopeptide fragments through solid phase synthesis and ligating them to protein fragments expressed in E. coli. To install donor fluorophores, we have adapted unnatural amino acid mutagenesis methods, including the generation of new tRNA synthetases for the incorporation of small, intrinsically fluorescent amino acids. We have used a combination of these two methods, as well as chemoenzymatic protein modification, to efficiently install sidechain and backbone modifications to generate proteins labeled with fluorophore/thioamide pairs.
Collapse
Affiliation(s)
- Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | |
Collapse
|
6
|
Jung S, Kwon I. Expansion of bioorthogonal chemistries towards site-specific polymer–protein conjugation. Polym Chem 2016. [DOI: 10.1039/c6py00856a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal chemistries have been used to achieve polymer-protein conjugation with the retained critical properties.
Collapse
Affiliation(s)
- Secheon Jung
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
- Department of Chemical Engineering
| |
Collapse
|
7
|
Lim SI, Kwon I. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids. Crit Rev Biotechnol 2015; 36:803-15. [DOI: 10.3109/07388551.2015.1048504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA and
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA and
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
8
|
Warner JB, Muthusamy AK, Petersson EJ. Specific modulation of protein activity by using a bioorthogonal reaction. Chembiochem 2014; 15:2508-14. [PMID: 25256385 DOI: 10.1002/cbic.201402423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/06/2022]
Abstract
Unnatural amino acids with bioorthogonal reactive groups have the potential to provide a rapid and specific mechanism for covalently inhibiting a protein of interest. Here, we use mutagenesis to insert an unnatural amino acid containing an azide group (Z) into the target protein at positions such that a "click" reaction with an alkyne modulator (X) will alter the function of the protein. This bioorthogonally reactive pair can engender specificity of X for the Z-containing protein, even if the target is otherwise identical to another protein, allowing for rapid target validation in living cells. We demonstrate our method using inhibition of the Escherichia coli enzyme aminoacyl transferase by both active-site occlusion and allosteric mechanisms. We have termed this a "clickable magic bullet" strategy, and it should be generally applicable to studying the effects of protein inhibition, within the limits of unnatural amino acid mutagenesis.
Collapse
Affiliation(s)
- John B Warner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 (USA)
| | | | | |
Collapse
|
9
|
Wu D, Zhu J, Sheng C, Wang W, Li J. Synthesis of γ-Oxo-α,β-dehydro-α-amino Acids fromN-tert-Butyloxycarbonyl-α-Imino Esters and Carbonylmethyl 2-Pyridinylsulfones via an Mannich-Elimination Cascade. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Kulkarni C, Kinzer-Ursem TL, Tirrell DA. Selective functionalization of the protein N terminus with N-myristoyl transferase for bioconjugation in cell lysate. Chembiochem 2013; 14:1958-62. [PMID: 24030852 DOI: 10.1002/cbic.201300453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 12/16/2022]
Abstract
A site to behold: Robust site-specific functionalization of engineered proteins is achieved with N-myristoyl transferase (NMT) in bacterial cells. NMT tolerates non-natural substrate proteins as well as reactive fatty acid tags, rendering it a powerful tool for protein conjugation applications, including the construction of protein microarrays from lysate.
Collapse
Affiliation(s)
- Chethana Kulkarni
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (USA) http://tirrell-lab.caltech.edu
| | | | | |
Collapse
|
11
|
Nischan N, Chakrabarti A, Serwa RA, Bovee-Geurts PHM, Brock R, Hackenberger CPR. Stabilization of Peptides for Intracellular Applications by Phosphoramidate-Linked Polyethylene Glycol Chains. Angew Chem Int Ed Engl 2013; 52:11920-4. [DOI: 10.1002/anie.201303467] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/11/2022]
|
12
|
Nischan N, Chakrabarti A, Serwa RA, Bovee-Geurts PHM, Brock R, Hackenberger CPR. Stabilisierung von Peptiden für intrazelluläre Anwendungen mit Phosphoramidat-verzweigten Polyethylenglycol-Ketten. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Tanaka T, Wagner AM, Warner JB, Wang YJ, Petersson EJ. Expressed protein ligation at methionine: N-terminal attachment of homocysteine, ligation, and masking. Angew Chem Int Ed Engl 2013; 52:6210-3. [PMID: 23629972 DOI: 10.1002/anie.201302065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Tomohiro Tanaka
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | | | |
Collapse
|
14
|
Tanaka T, Wagner AM, Warner JB, Wang YJ, Petersson EJ. Expressed Protein Ligation at Methionine: N-Terminal Attachment of Homocysteine, Ligation, and Masking. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Acevedo-Rocha CG, Geiermann AS, Budisa N, Merkel L. Design of protein congeners containing β-cyclopropylalanine. MOLECULAR BIOSYSTEMS 2013; 8:2719-23. [PMID: 22833107 DOI: 10.1039/c2mb25193k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The non-canonical amino acid (ncAA) analogue of methionine (Met), β-cyclopropylalanine (Cpa), was successfully incorporated into recombinant proteins expressed in Escherichia coli in a residue-specific manner. Proteins substituted in this way are congeners because they derive from the same gene sequence as the parent protein but contain a fraction of ncAAs. We have expressed congeners using parent and mutant gene sequences of various proteins (lipase, annexin A5, enhanced green fluorescent protein, and barstar) and found that Cpa incorporation is highly dependent on the protein sequence composition. These results indicate that the global amino acid composition of proteins might be a crucial parameter that influences the outcome of unnatural translation. In addition, we could also demonstrate that the chemical nature of the second residue could be essential for successful ncAA incorporation.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany.
| | | | | | | |
Collapse
|
16
|
Temming RP, Eggermont L, van Eldijk MB, van Hest JCM, van Delft FL. N-terminal dual protein functionalization by strain-promoted alkyne–nitrone cycloaddition. Org Biomol Chem 2013; 11:2772-9. [DOI: 10.1039/c3ob00043e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Wagner AM, Fegley MW, Warner JB, Grindley CLJ, Marotta NP, Petersson EJ. N-terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc 2011; 133:15139-47. [PMID: 21894909 PMCID: PMC3189496 DOI: 10.1021/ja2055098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methods for synthetically manipulating protein structure enable greater flexibility in the study of protein function. Previous characterization of the Escherichia coli aminoacyl tRNA transferase (AaT) has shown that it can modify the N-terminus of a protein with an amino acid from a tRNA or a synthetic oligonucleotide donor. Here, we demonstrate that AaT can efficiently use a minimal adenosine substrate, which can be synthesized in one to two steps from readily available starting materials. We have characterized the enzymatic activity of AaT with aminoacyl adenosyl donors and found that reaction products do not inhibit AaT. The use of adenosyl donors removes the substrate limitations imposed by the use of synthetases for tRNA charging and avoids the complex synthesis of an oligonucleotide donor. Thus, our AaT donors increase the potential substrate scope and reaction scale for N-terminal protein modification under conditions that maintain folding.
Collapse
Affiliation(s)
- Anne M. Wagner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - Mark W. Fegley
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - John B. Warner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - Christina L. J. Grindley
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | | | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| |
Collapse
|
18
|
Zhang M, Zhang X, Li J, Guo Q, Xiao Q. A New Pyridoxal Derivative for Transamination of N-Terminus of Proteins. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201180306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Fung AW, Ebhardt HA, Abeysundara H, Moore J, Xu Z, Fahlman RP. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation. J Mol Biol 2011; 409:617-29. [PMID: 21530538 DOI: 10.1016/j.jmb.2011.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.
Collapse
Affiliation(s)
- Angela W Fung
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
20
|
Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res 2010; 28:1480-99. [PMID: 21116694 PMCID: PMC3137928 DOI: 10.1007/s11095-010-0325-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/08/2010] [Indexed: 02/05/2023]
Abstract
Protein microarray technology possesses some of the greatest potential for providing direct information on protein function and potential drug targets. For example, functional protein microarrays are ideal tools suited for the mapping of biological pathways. They can be used to study most major types of interactions and enzymatic activities that take place in biochemical pathways and have been used for the analysis of simultaneous multiple biomolecular interactions involving protein-protein, protein-lipid, protein-DNA and protein-small molecule interactions. Because of this unique ability to analyze many kinds of molecular interactions en masse, the requirement of very small sample amount and the potential to be miniaturized and automated, protein microarrays are extremely well suited for protein profiling, drug discovery, drug target identification and clinical prognosis and diagnosis. The aim of this review is to summarize the most recent developments in the production, applications and analysis of protein microarrays.
Collapse
Affiliation(s)
- Luis Berrade
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 616, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
21
|
Ebhardt HA, Xu Z, Fung AW, Fahlman RP. Quantification of the post-translational addition of amino acids to proteins by MALDI-TOF mass spectrometry. Anal Chem 2010; 81:1937-43. [PMID: 19186990 DOI: 10.1021/ac802423d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA protein transferases catalyze the post-translational addition of amino acids to proteins. The eubacterial leucyl/phenylalanyl-tRNA-protein transferase (L/F transferase) catalyzes the transfer of leucine or phenylalanine from their respective aminoacylated tRNAs to the N-termini of substrate proteins possessing an N-terminal lysine or arginine amino acid. Conventional assays to quantify L/F transferase activity involve measuring radioactive amino acid incorporation into substrate proteins. We have developed a quantitative matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry procedure to measure the enzymatic activity of L/F transferase. The procedure utilizes stable isotope labeled substrate and internal standard peptides. The method is used to determine the kinetic parameters of k(cat) and K(m) for the enzymatic transfer of phenylalanine and three unnatural amino acid derivatives from an aminoacyl-tRNA to a peptide substrate.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | |
Collapse
|
22
|
Tiefenbrunn TK, Dawson PE. Chemoselective ligation techniques: modern applications of time-honored chemistry. Biopolymers 2010; 94:95-106. [PMID: 20091876 DOI: 10.1002/bip.21337] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chemoselective ligation techniques enable the selective modification of proteins and other biomolecules in dilute aqueous solution. Importantly, these reactions occur at or near physiological pH and are compatible with the complex array of functional groups commonly found in biological macromolecules including proteins, nucleotides, and carbohydrates, allowing conjugation reactions to be carried out on unprotected substrates. Recently, a growing number of reactions with established utility in synthetic organic chemistry have been shown to have surprising utility in the context of biological molecules in aqueous media. In this review we highlight several promising reactions that may have widespread applicability in the generation of new materials based on biological macromolecules.
Collapse
Affiliation(s)
- Theresa K Tiefenbrunn
- Department of Cell Biology, 10550 N. Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
23
|
Ebisu K, Tateno H, Kuroiwa H, Kawakami K, Ikeuchi M, Hirabayashi J, Sisido M, Taki M. N-terminal specific point-immobilization of active proteins by the one-pot NEXT-A method. Chembiochem 2010; 10:2460-4. [PMID: 19739192 DOI: 10.1002/cbic.200900430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Keitaro Ebisu
- Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xiao J, Tolbert TJ. Synthesis of N-terminally linked protein dimers and trimers by a combined native chemical ligation-CuAAC click chemistry strategy. Org Lett 2010; 11:4144-7. [PMID: 19705863 DOI: 10.1021/ol9016468] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel method for the synthesis of N-terminally linked protein multimers is reported. Azide and alkyne thioesters were synthesized for the N-terminal modification of expressed proteins using native chemical ligation (NCL). Proteins modified by these moieties can be joined together to form homodimers and homotrimers via Cu(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC) click chemistry. The orthogonal nature of this reaction allows the production of protein heteromultimers, and this is demonstrated by synthesis of a protein heterodimer.
Collapse
Affiliation(s)
- Junpeng Xiao
- Interdisciplinary Biochemistry Graduate Program and Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
25
|
Vázquez-Dorbatt V, Tolstyka ZP, Maynard HD. Synthesis of Aminooxy End-functionalized pNIPAAm by RAFT Polymerization for Protein and Polysaccharide Conjugation. Macromolecules 2009; 42:7650-7656. [PMID: 21544220 DOI: 10.1021/ma9013803] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Boc-protected aminooxy end-functionalized poly(N-isopropylacrylamide) (pNIPAAm) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The monomer was polymerized in the presence of a Boc-protected aminooxy trithiocarbonate chain transfer agent (CTA) utilizing 2,2'-azobis(2-isobutyronitrile) (AIBN) as the initiator in DMF at 70 °C. The final polymer had a number-average molecular weight (M(n)) of 4,200 Da as determined by (1)H NMR spectroscopy and a narrow polydispersity index (1.14) by gel permeation chromatography (GPC). The Boc group was removed, and the polymer was then incubated with N(ε)-levulinyl lysine-modified bovine serum albumin (BSA). Gel electrophoresis confirmed that the conjugation was successful. The aminooxy end-functionalized pNIPAAm was also immobilized on a gold surface after reduction of the trithiocarbonate end-group. The pNIPAAm surface was then incubated with an aldehyde-modified heparin to yield the polysaccharide-functionalized surface. All surface modifications were monitored by FT-IR spectroscopy.
Collapse
Affiliation(s)
- Vimary Vázquez-Dorbatt
- Department of Chemistry & Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569
| | | | | |
Collapse
|
26
|
Shozen N, Iijima I, Hohsaka T. Site-specific incorporation of PEGylated amino acids into proteins using nonnatural amino acid mutagenesis. Bioorg Med Chem Lett 2009; 19:4909-11. [PMID: 19660942 DOI: 10.1016/j.bmcl.2009.07.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
Site-directed incorporation of PEGylated nonnatural amino acids with 4, 8, and 12 repeated ethylene glycol units was examined in a cell-free translation system. PEGylated aminophenylalanine derivatives were successfully incorporated into proteins, whereas PEGylated lysines were not. The incorporation efficiency of the PEGylated amino acids decreased with an increase in PEG chain length. The present method will be useful for preparation of proteins which are PEGylated in a site-specific and quantitative manner.
Collapse
Affiliation(s)
- Naoki Shozen
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
| | | | | |
Collapse
|
27
|
Hackenberger C, Schwarzer D. Chemoselektive Ligations- und Modifikationsstrategien für Peptide und Proteine. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801313] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Hackenberger C, Schwarzer D. Chemoselective Ligation and Modification Strategies for Peptides and Proteins. Angew Chem Int Ed Engl 2008; 47:10030-74. [DOI: 10.1002/anie.200801313] [Citation(s) in RCA: 651] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Scheck RA, Dedeo MT, Iavarone AT, Francis MB. Optimization of a biomimetic transamination reaction. J Am Chem Soc 2008; 130:11762-70. [PMID: 18683929 DOI: 10.1021/ja802495w] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a range of protein substrates, N-terminal transamination offers a convenient way to install a reactive ketone or aldehyde functional group at a single location. We report herein the effects of the identity of N-terminal residues on the product distribution generated upon reaction with pyridoxal 5'-phosphate (PLP). This study was accomplished through the combination of solid-phase peptide synthesis with detailed liquid chromatography-mass spectrometry analysis. Many N-terminal amino acids provided high yields of the desired transaminated products, but some residues (His, Trp, Lys, and Pro) generated adducts with PLP itself. N-terminal Cys and Ser residues were observed to undergo beta-elimination in addition to transamination, and the transamination product of N-terminal Gln was resistant to subsequent oxime formation attempts. The information generated through the screening of peptide substrates was successfully applied to a protein target, changing an initially unreactive terminus into one that could be modified in high (70%) yield. Thus, these studies have increased our predictive power for the reaction, both in terms of improving conversion and suppressing reaction byproducts. An initial set of guidelines that may be used to increase the applicability of this reaction to specific proteins of interest is provided.
Collapse
Affiliation(s)
- Rebecca A Scheck
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|