1
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
3
|
Chen L, Wei X, Matsuda Y. Depside Bond Formation by the Starter-Unit Acyltransferase Domain of a Fungal Polyketide Synthase. J Am Chem Soc 2022; 144:19225-19230. [PMID: 36223511 DOI: 10.1021/jacs.2c08585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Depsides are polyphenolic molecules comprising two or more phenolic acid derivatives linked by an ester bond, which is called a depside bond in these molecules. Despite more than a century of intensive research on depsides, the biosynthetic mechanism of depside bond formation remains unclear. In this study, we discovered a polyketide synthase, DrcA, from the fungus Aspergillus duricaulis CBS 481.65 and found that DrcA synthesizes CJ-20,557 (1), a heterodimeric depside composed of 3-methylorsellinic acid and 3,5-dimethylorsellinic acid. Moreover, we determined that depside bond formation is catalyzed by the starter-unit acyltransferase (SAT) domain of DrcA. Remarkably, this is a previously undescribed form of SAT domain chemistry. Further investigation revealed that 1 is transformed into duricamidepside (2), a depside-amino acid conjugate, by the single-module nonribosomal peptide synthetase DrcB.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xingxing Wei
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
4
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
5
|
Tsai SC(S. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases. Annu Rev Biochem 2018; 87:503-531. [DOI: 10.1146/annurev-biochem-063011-164509] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Collapse
Affiliation(s)
- Shiou-Chuan (Sheryl) Tsai
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| |
Collapse
|
6
|
Herbst DA, Huitt-Roehl CR, Jakob RP, Kravetz JM, Storm PA, Alley JR, Townsend CA, Maier T. The structural organization of substrate loading in iterative polyketide synthases. Nat Chem Biol 2018; 14:474-479. [PMID: 29610486 DOI: 10.1038/s41589-018-0026-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 11/09/2022]
Abstract
Polyketide synthases (PKSs) are microbial multienzymes for the biosynthesis of biologically potent secondary metabolites. Polyketide production is initiated by the loading of a starter unit onto an integral acyl carrier protein (ACP) and its subsequent transfer to the ketosynthase (KS). Initial substrate loading is achieved either by multidomain loading modules or by the integration of designated loading domains, such as starter unit acyltransferases (SAT), whose structural integration into PKS remains unresolved. A crystal structure of the loading/condensing region of the nonreducing PKS CTB1 demonstrates the ordered insertion of a pseudodimeric SAT into the condensing region, which is aided by the SAT-KS linker. Cryo-electron microscopy of the post-loading state trapped by mechanism-based crosslinking of ACP to KS reveals asymmetry across the CTB1 loading/-condensing region, in accord with preferential 1:2 binding stoichiometry. These results are critical for re-engineering the loading step in polyketide biosynthesis and support functional relevance of asymmetric conformations of PKSs.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | | | - Roman P Jakob
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | - Jacob M Kravetz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Philip A Storm
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie R Alley
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Timm Maier
- Department of Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Liu J, Zhou Y, Yi T, Zhao M, Xie N, Lei M, Liu Q, Shao Y, Chen F. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7. Appl Microbiol Biotechnol 2016; 100:7037-49. [PMID: 26946170 DOI: 10.1007/s00253-016-7397-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
Monascus pigments (Mps) are a group of azaphilonic secondary metabolites produced by Monascus spp. via a polyketide pathway. A mutant deleted an about 30 kb region of Mps gene cluster from Monascus ruber M7 was isolated previously, which produces a high amount of a light yellow pigment. The current study revealed that the mutant named ΔMpigJ-R lost proximate eight genes of the Mps gene cluster in M. ruber M7 through genetic analysis at DNA and RNA levels. The produced light yellow material was identified as a benzaldehyde derivative named as 6-(4-hydroxy-2-oxopentyl)-3-methyl-2, 4-dioxocyclohexane carb-aldehyde (M7PKS-1) by FT-IR, NMR, and MS. The sodium acetate-1-(13)C feeding experiment indicated that M7PKS-1 was a product produced from polyketide pathway. Finally, the feeding of M7PKS-1 helped to induce and regain Mps production of the mutants (ΔMpigA and ΔMpigE) which were previously unable to biosynthesize Mps and proved that M7PKS-1 was an initial intermediate of Mps. The results in this study provide a line of action to unveil Monascus pigments biosynthesis pathway.
Collapse
Affiliation(s)
- Jiao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Tao Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingming Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Nana Xie
- School of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Ming Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingpei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
Winter JM, Cascio D, Dietrich D, Sato M, Watanabe K, Sawaya MR, Vederas JC, Tang Y. Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis. J Am Chem Soc 2015; 137:9885-93. [PMID: 26172141 DOI: 10.1021/jacs.5b04520] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM's SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that is also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. The crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.
Collapse
Affiliation(s)
- Jaclyn M Winter
- †Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Duilio Cascio
- §Department of Energy (DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - David Dietrich
- ∥Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michio Sato
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michael R Sawaya
- §Department of Energy (DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, United States
| | - John C Vederas
- ∥Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yi Tang
- †Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States.,‡Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Abstract
In this viewpoint highlights are drawn from a deep analysis of the multifaceted problem of aflatoxin biosynthesis, one of the most highly rearranged polyketide natural products known. Fundamental chemical insights have emerged into how cytochrome P450-mediated skeletal rearrangements occur through probable cationic intermediates and oxidative dearomatizations, which are applicable more widely in natural product catabolism. So to where current experimental methods have failed in our hands, bioinformatic tools and fresh experimental strategies have been developed to identify linker regions in large, polydomain proteins and guide the dissection and reassembly of their component parts. It has been possible to deduce individual catalytic roles, how overall synthesis is coordinated and how these enzymes can be re-engineered in a rational manner to prepare non-natural products. These insights and innovations were often not planned or anticipated, but sprung from the inability to answer fundamental questions. Advances in science can take place by chance favoring the prepared mind, other times by refusing to give up and devising new solutions to address hard questions. Both ways forward played important roles in the investigation of aflatoxin biosynthesis. For these contributions I am pleased to share this special issue of NPR with John Vederas and Tom Simpson, who have been leaders in this field for the last third of a century.
Collapse
Affiliation(s)
- Craig A Townsend
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
Liu T, Sanchez JF, Chiang YM, Oakley BR, Wang CCC. Rational domain swaps reveal insights about chain length control by ketosynthase domains in fungal nonreducing polyketide synthases. Org Lett 2014; 16:1676-9. [PMID: 24593241 PMCID: PMC3993715 DOI: 10.1021/ol5003384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
A facile
genetic methodology in the filamentous fungus Aspergillus
nidulans allowed exchange of the starter unit ACP transacylase
(SAT) domain
in the nonreduced polyketide synthase (NR-PKS) AfoE of the asperfuranone
pathway with the SAT domains from 10 other NR-PKSs. The newly created
hybrid with the NR-PKS AN3386 is able to accept a longer starter unit
in place of the native substrate to create a novel aromatic polyketide in vivo.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy , Los Angeles, California 90089, United States
| | | | | | | | | |
Collapse
|
11
|
Characterization of a fungal thioesterase having Claisen cyclase and deacetylase activities in melanin biosynthesis. ACTA ACUST UNITED AC 2013; 19:1525-34. [PMID: 23261597 DOI: 10.1016/j.chembiol.2012.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022]
Abstract
Melanins are a broad class of darkly pigmented macromolecules formed by oxidative polymerization of phenolic monomers. In fungi, melanins are known virulence factors that contribute to pathogenicity. Their biosynthesis generally involves polymerization of 1,8-dihydroxynaphthalene via a 1,3,6,8-tetrahydroxynaphthalene (THN) precursor assembled by multidomain, nonreducing polyketide synthases. Convergent routes to THN have evolved in fungi. Parallel heptaketide and hexaketide pathways exist that utilize conventional C-terminal thioesterase/Claisen cyclase domains and separate side-chain deacylases. Here, in vitro characterization of Pks1 from Colletotrichum lagenarium establishes a true THN synthase with a bifunctional thioesterase (TE) catalyzing both cyclization and deacetylation of an enzyme-bound hexaketide substrate. Chimeric TE domains were generated by swapping lid regions of active sites between classes of melanin TEs to gain insight into this unprecedented catalysis of carbon-carbon bond making and breaking by an α/β-hydrolase fold enzyme.
Collapse
|
12
|
Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel) 2013; 5:717-42. [PMID: 23604065 PMCID: PMC3705289 DOI: 10.3390/toxins5040717] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023] Open
Abstract
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have been exposed to complex evolutionary mechanisms, which have determined the great number and diversity of metabolites. In this study, we considered the most important polyketide and peptide mycotoxins and, for the first time, a phylogenetic analysis of both PKSs and NRPSs involved in their biosynthesis was assessed using two domains for each enzyme: β-ketosynthase (KS) and acyl-transferase (AT) for PKSs; adenylation (A) and condensation (C) for NRPSs. The analysis of both KS and AT domains confirmed the differentiation of the three classes of highly, partially and non-reducing PKSs. Hybrid PKS-NRPSs involved in mycotoxins biosynthesis grouped together in the phylogenetic trees of all the domains analyzed. For most mycotoxins, the corresponding biosynthetic enzymes from distinct fungal species grouped together, except for PKS and NRPS involved in ochratoxin A biosynthesis, for which an unlike process of evolution could be hypothesized in different species.
Collapse
Affiliation(s)
- Antonia Gallo
- Institute of Sciences of Food Production ISPA, National Research Council CNR, Bari, Italy.
| | | | | |
Collapse
|
13
|
Characterization of the biosynthetic genes for 10,11-dehydrocurvularin, a heat shock response-modulating anticancer fungal polyketide from Aspergillus terreus. Appl Environ Microbiol 2013; 79:2038-47. [PMID: 23335766 DOI: 10.1128/aem.03334-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
10,11-Dehydrocurvularin is a prevalent fungal phytotoxin with heat shock response and immune-modulatory activities. It features a dihydroxyphenylacetic acid lactone polyketide framework with structural similarities to resorcylic acid lactones like radicicol or zearalenone. A genomic locus was identified from the dehydrocurvularin producer strain Aspergillus terreus AH-02-30-F7 to reveal genes encoding a pair of iterative polyketide synthases (A. terreus CURS1 [AtCURS1] and AtCURS2) that are predicted to collaborate in the biosynthesis of 10,11-dehydrocurvularin. Additional genes in this locus encode putative proteins that may be involved in the export of the compound from the cell and in the transcriptional regulation of the cluster. 10,11-Dehydrocurvularin biosynthesis was reconstituted in Saccharomyces cerevisiae by heterologous expression of the polyketide synthases. Bioinformatic analysis of the highly reducing polyketide synthase AtCURS1 and the nonreducing polyketide synthase AtCURS2 highlights crucial biosynthetic programming differences compared to similar synthases involved in resorcylic acid lactone biosynthesis. These differences lead to the synthesis of a predicted tetraketide starter unit that forms part of the 12-membered lactone ring of dehydrocurvularin, as opposed to the penta- or hexaketide starters in the 14-membered rings of resorcylic acid lactones. Tetraketide N-acetylcysteamine thioester analogues of the starter unit were shown to support the biosynthesis of dehydrocurvularin and its analogues, with yeast expressing AtCURS2 alone. Differential programming of the product template domain of the nonreducing polyketide synthase AtCURS2 results in an aldol condensation with a different regiospecificity than that of resorcylic acid lactones, yielding the dihydroxyphenylacetic acid scaffold characterized by an S-type cyclization pattern atypical for fungal polyketides.
Collapse
|
14
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial Domain Swaps Provide Insights into the Rules of Fungal Polyketide Synthase Programming and the Rational Synthesis of Non-Native Aromatic Products. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Vagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial domain swaps provide insights into the rules of fungal polyketide synthase programming and the rational synthesis of non-native aromatic products. Angew Chem Int Ed Engl 2013; 52:1718-21. [PMID: 23283670 DOI: 10.1002/anie.201208550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Anna L Vagstad
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| |
Collapse
|
17
|
Newman AG, Vagstad AL, Belecki K, Scheerer JR, Townsend CA. Analysis of the cercosporin polyketide synthase CTB1 reveals a new fungal thioesterase function. Chem Commun (Camb) 2012; 48:11772-4. [PMID: 23108075 DOI: 10.1039/c2cc36010a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The polyketide synthase CTB1 is demonstrated to catalyze pyrone formation thereby expanding the known biosynthetic repertoire of thioesterase domains in iterative, non-reducing polyketide synthases.
Collapse
Affiliation(s)
- Adam G Newman
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
18
|
Yu J. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins (Basel) 2012; 4:1024-57. [PMID: 23202305 PMCID: PMC3509697 DOI: 10.3390/toxins4111024] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/20/2023] Open
Abstract
Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination.
Collapse
Affiliation(s)
- Jiujiang Yu
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA/ARS), New Orleans, LA 70112, USA.
| |
Collapse
|
19
|
Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genet Biol 2012; 49:996-1003. [PMID: 23078836 DOI: 10.1016/j.fgb.2012.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/09/2012] [Accepted: 09/27/2012] [Indexed: 11/20/2022]
Abstract
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides.
Collapse
|
20
|
Foulke-Abel J, Townsend CA. Demonstration of starter unit interprotein transfer from a fatty acid synthase to a multidomain, nonreducing polyketide synthase. Chembiochem 2012; 13:1880-4. [PMID: 22807303 DOI: 10.1002/cbic.201200267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 11/09/2022]
Abstract
The pathway for substrate transacylation between a fungal type I fatty acid synthase (FAS) and a nonreducing polyketide synthase (NR-PKS) was determined by in vitro reconstitution of dissected domains. System kinetics were influenced by domain dissections, and the FAS phosphopantetheinyl transferase (PPT) monodomain exhibited coenzyme A selectivity for the post-translational activation of the FAS acyl carrier protein (ACP).
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
21
|
Vagstad AL, Bumpus SB, Belecki K, Kelleher NL, Townsend CA. Interrogation of global active site occupancy of a fungal iterative polyketide synthase reveals strategies for maintaining biosynthetic fidelity. J Am Chem Soc 2012; 134:6865-77. [PMID: 22452347 DOI: 10.1021/ja3016389] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonreducing iterative polyketide synthases (NR-PKSs) are responsible for assembling the core of fungal aromatic natural products with diverse biological properties. Despite recent advances in the field, many mechanistic details of polyketide assembly by these megasynthases remain unknown. To expand our understanding of substrate loading, polyketide elongation, cyclization, and product release, active site occupancy and product output were explored by Fourier transform mass spectrometry using the norsolorinic acid anthrone-producing polyketide synthase, PksA, from the aflatoxin biosynthetic pathway in Aspergillus parasiticus. Here we report the simultaneous observation of covalent intermediates from all catalytic domains of PksA from in vitro reconstitution reactions. The data provide snapshots of iterative catalysis and reveal an underappreciated editing function for the C-terminal thioesterase domain beyond its recently established synthetic role in Claisen/Dieckmann cyclization and product release. The specificity of thioesterase catalyzed hydrolysis was explored using biosynthetically relevant protein-bound and small molecule acyl substrates and demonstrated activity against hexanoyl and acetyl, but not malonyl. Processivity of polyketide extension was supported by the inability of a nonhydrolyzable malonyl analog to trap products of intermediate chain lengths and by the detection of only fully extended species observed covalently bound to, and as the predominant products released by, PksA. High occupancy of the malonyl transacylase domain and fast relative rate of malonyl transfer compared to starter unit transfer indicate that rapid loading of extension units onto the carrier domain facilitates efficient chain extension in a manner kinetically favorable to ultimate product formation.
Collapse
Affiliation(s)
- Anna L Vagstad
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Fungal aromatic polyketides constitute a large family of bioactive natural products and are synthesized by the non-reducing group of iterative polyketide synthases (PKSs). Their diverse structures arise from selective enzymatic modifications of reactive, enzyme-bound poly-β-keto intermediates. How iterative PKSs control starter unit selection, polyketide chain initiation and elongation, intermediate folding and cyclization, selective redox or modification reactions during assembly, and product release are central mechanistic questions underlying iterative catalysis. This Review highlights recent insights into these questions, with a particular focus on the biosynthetic programming of fungal aromatic polyketides, and draws comparisons with the allied biosynthetic processes in bacteria.
Collapse
|
23
|
Campbell CD, Vederas JC. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers 2010; 93:755-63. [PMID: 20577995 DOI: 10.1002/bip.21428] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fungal polyketide lovastatin is a cholesterol lowering agent that is an immediate precursor to a multi-billion dollar drug, simvastatin (Zocor). Lovastatin is produced by an iterative type I polyketide synthase known as LovB and a partner enoyl reductase (LovC). There is evidence that a Diels-Alderase enzyme activity is utilized in its biosynthesis. This review examines the biosynthesis of lovastatin, as well as of compactin, equisetin, cytochalasins, and solanapyrones, which are other structurally related polyketides that appear to utilize a Diels-Alderase.
Collapse
Affiliation(s)
- Chantel D Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
24
|
Huffman J, Gerber R, Du L. Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers 2010; 93:764-76. [PMID: 20578001 PMCID: PMC2894268 DOI: 10.1002/bip.21483] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyketides (PKs) are a large group of natural products produced by microorganisms and plants. They are biopolymers of acetate and other short carboxylates and are biosynthesized by multifunctional enzymes called polyketide synthases (PKSs). This review discusses the biosynthesis of four toxic PK, aflatoxins, fumonisins, ochratoxins (OTs), and zearalenone. These metabolites are structurally diverse and differ in their mechanisms of toxicity. However, they are all of concern in food safety and agriculture because of their toxic properties and their frequent accumulation in crops used for food and feed. The focus is on the recent advancements in the understanding of the molecular mechanisms for the biosynthesis of these mycotoxins. Several of the mycotoxin PKSs have been genetically and biochemically studied while other PKSs remain to be investigated. Multiple post-PKS modifications are often required for the maturation of the mycotoxins. Many of these modification steps for aflatoxins and fumonisins are well established while the post-PKS modifications for zearalenone and OTs remain to be biochemically characterized. More efforts are needed to completely illustrate the biosynthetic mechanisms for this important group of PKs.
Collapse
Affiliation(s)
- Justin Huffman
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Kira J Weissman
- Department of Pharmaceutical Biotechnology, Saarland University, P. O. Box 151150, 66041 Saarbrücken, Germany.
| |
Collapse
|
26
|
Zhou H, Qiao K, Gao Z, Meehan MJ, Li JWH, Zhao X, Dorrestein PC, Vederas JC, Tang Y. Enzymatic synthesis of resorcylic acid lactones by cooperation of fungal iterative polyketide synthases involved in hypothemycin biosynthesis. J Am Chem Soc 2010; 132:4530-1. [PMID: 20222707 PMCID: PMC2861853 DOI: 10.1021/ja100060k] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypothemycin is a macrolide protein kinase inhibitor from the fungus Hypomyces subiculosus. During biosynthesis, its carbon framework is assembled by two iterative polyketide synthases (PKSs), Hpm8 (highly reducing) and Hpm3 (nonreducing). These were heterologously expressed in Saccharomyces cerevisiae BJ5464-NpgA, purified to near homogeneity, and reconstituted in vitro to produce (6'S,10'S)-trans-7',8'-dehydrozearalenol (1) from malonyl-CoA and NADPH. The structure of 1 was determined by X-ray crystallographic analysis. In the absence of functional Hpm3, the reducing PKS Hpm8 produces and offloads truncated pyrone products instead of the expected hexaketide. The nonreducing Hpm3 is able to accept an N-acetylcysteamine thioester of a correctly functionalized hexaketide to form 1, but it is unable to initiate polyketide formation from malonyl-CoA. We show that the starter-unit:ACP transacylase (SAT) of Hpm3 is critical for crosstalk between the two enzymes and that the rate of biosynthesis of 1 is determined by the rate of hexaketide formation by Hpm8.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
| | - Kangjian Qiao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
| | - Zhizeng Gao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael J. Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - Jesse W.-H. Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Xiling Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
| |
Collapse
|
27
|
Chiang YM, Oakley BR, Keller NP, Wang CCC. Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol 2010; 86:1719-36. [PMID: 20361326 DOI: 10.1007/s00253-010-2525-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/16/2022]
Abstract
Aspergillus species have the ability to produce a wide range of secondary metabolites including polyketides that are generated by multi-domain polyketide synthases (PKSs). Recent biochemical studies using dissected single or multiple domains from PKSs have provided deep insight into how these PKSs control the structural outcome. Moreover, the recent genome sequencing of several species has greatly facilitated the understanding of the biosynthetic pathways for these secondary metabolites. In this review, we will highlight the current knowledge regarding polyketide biosynthesis in Aspergillus based on the domain architecture of non-reducing, highly reducing, and partially reducing PKSs, and PKS-non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan, Republic of China
| | | | | | | |
Collapse
|
28
|
Bringmann G, Gulder TAM, Hamm A, Goodfellow M, Fiedler HP. Multiple convergence in polyketide biosynthesis: a third folding mode to the anthraquinone chrysophanol. Chem Commun (Camb) 2009:6810-2. [PMID: 19885487 DOI: 10.1039/b910501h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polyketide chrysophanol is shown to be formed, in an organism-specific way, by a third folding mode, involving a remarkable cyclization of a bicyclic diketo precursor, thus establishing the first example of multiple convergence in polyketide biosynthesis.
Collapse
Affiliation(s)
- Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. ACTA ACUST UNITED AC 2009; 15:1328-38. [PMID: 19101477 DOI: 10.1016/j.chembiol.2008.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/05/2008] [Accepted: 10/03/2008] [Indexed: 01/17/2023]
Abstract
Fungal polyketides with the resorcylic acid lactone (RAL) scaffold are of interest for growth stimulation, the treatment of cancer, and neurodegenerative diseases. The RAL radicicol is a nanomolar inhibitor of the chaperone Hsp90, whose repression leads to a combinatorial blockade of cancer-causing pathways. Clustered genes for radicicol biosynthesis were identified and functionally characterized from the endophytic fungus Chaetomium chiversii, and compared to recently described RAL biosynthetic gene clusters. Radicicol production is abolished upon targeted inactivation of a putative cluster-specific regulator, or either of the two polyketide synthases that are predicted to collectively synthesize the radicicol polyketide core. Genomic evidence supports the existence of flavin-dependent halogenases in fungi: inactivation of such a putative halogenase from the C. chiversii radicicol locus yields dechloro-radicicol (monocillin I). Inactivation of a cytochrome P450 epoxidase furnishes pochonin D, a deepoxy-dihydro radicicol analog.
Collapse
|
32
|
Abstract
Fungi produce a wide variety of biologically active compounds, a large proportion of which are produced by the polyketide biosynthetic pathway. Fungal polyketides comprise a very large and structurally very diverse group, and many display important biological activities, including lovastatin, aflatoxins, and strobilurins. These are produced by very large multifunctional iterative enzymes, the iterative type I polyketide synthases (PKSs) whose closest structural and functional analogues are the mammalian fatty acid synthases. Although fungal polyketides were one of the first classes of secondary metabolites to be subject to extensive biosynthetic studies, they remain the least studied and understood at the enzyme level. This chapter presents an overview of methodologies that have been applied to in vivo and in vitro genetic and biochemical studies on the PKSs responsible for both aromatic and highly reduced polyketide metabolites, and which are providing an improved insight into how these highly complex enzymes function.
Collapse
Affiliation(s)
- Russell J Cox
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
33
|
Crawford JM, Vagstad AL, Ehrlich KC, Townsend CA. Starter unit specificity directs genome mining of polyketide synthase pathways in fungi. Bioorg Chem 2008; 36:16-22. [PMID: 18215412 DOI: 10.1016/j.bioorg.2007.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 11/03/2007] [Accepted: 11/07/2007] [Indexed: 11/26/2022]
Abstract
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce.
Collapse
Affiliation(s)
- Jason M Crawford
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|