1
|
Nong K, Zhao YL, Yi S, Zhang X, Wei S, Yao ZJ. 3-Acyl-4-Pyranone as a Lysine Residue-Selective Bioconjugation Reagent for Peptide and Protein Modification. Bioconjug Chem 2024; 35:286-299. [PMID: 38451202 DOI: 10.1021/acs.bioconjchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.
Collapse
Affiliation(s)
- Keyi Nong
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yi-Lu Zhao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuchun Zhang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
3
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
4
|
Yi S, Wei S, Wu Q, Wang H, Yao Z. Azaphilones as Activation‐Free Primary‐Amine‐Specific Bioconjugation Reagents for Peptides, Proteins and Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Qingsong Wu
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Zhu‐Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| |
Collapse
|
5
|
Yi S, Wei S, Wu Q, Wang H, Yao ZJ. Azaphilones as Activation-Free Primary-Amine-Specific Bioconjugation Reagents for Peptides, Proteins and Lipids. Angew Chem Int Ed Engl 2021; 61:e202111783. [PMID: 34825445 DOI: 10.1002/anie.202111783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Residue-selective bioconjugation methods for biomolecules are highly sought to expand the scope of their biological and medical applications. Inspired by the mechanism of the generation of natural vinylogous γ-pyridones (vPDNs), we have developed a novel unique azaphilone-based, activation-free primary-amine-selective bioconjugation method for biomolecules. Our strategy allows facile functionalization of primary amine groups in peptides and proteins, including the clinically used therapeutic antibody trastuzumab, by generating a highly stable vPDN linkage. Excellent chemoselectivity toward primary amines also enables the azaphilone derivatives to specifically modify the lipid components of Gram-positive bacteria while bypassing Gram-negative bacteria and mammalian cells. The new method shows significant advantages including chemoselectivity, efficiency, flexibility and biocompatibility, and therefore provides a valuable addition to the current toolbox for biomolecule conjugation.
Collapse
Affiliation(s)
- Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Qingsong Wu
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
6
|
Tanaka K, Vong K. The Journey to In Vivo Synthetic Chemistry: From Azaelectrocyclization to Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Richardson MB, Gabriel KN, Garcia JA, Ashby SN, Dyer RP, Kim JK, Lau CJ, Hong J, Le Tourneau RJ, Sen S, Narel DL, Katz BB, Ziller JW, Majumdar S, Collins PG, Weiss GA. Pyrocinchonimides Conjugate to Amine Groups on Proteins via Imide Transfer. Bioconjug Chem 2020; 31:1449-1462. [PMID: 32302483 DOI: 10.1021/acs.bioconjchem.0c00143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in bioconjugation, the ability to link biomolecules to each other, small molecules, surfaces, and more, can spur the development of advanced materials and therapeutics. We have discovered that pyrocinchonimide, the dimethylated analogue of maleimide, undergoes a surprising transformation with biomolecules. The reaction targets amines and involves an imide transfer, which has not been previously reported for bioconjugation purposes. Despite their similarity to maleimides, pyrocinchonimides do not react with free thiols. Though both lysine residues and the N-termini of proteins can receive the transferred imide, the reaction also exhibits a marked preference for certain amines that cannot solely be ascribed to solvent accessibility. This property is peculiar among amine-targeting reactions and can reduce combinatorial diversity when many available reactive amines are available, such as in the formation of antibody-drug conjugates. Unlike amides, the modification undergoes very slow reversion under high pH conditions. The reaction offers a thermodynamically controlled route to single or multiple modifications of proteins for a wide range of applications.
Collapse
Affiliation(s)
- Mark B Richardson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kristin N Gabriel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph A Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shareen N Ashby
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rebekah P Dyer
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joshua K Kim
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Calvin J Lau
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - John Hong
- School of Medicine, University of California, Irvine, Irvine, California 92697, United States
| | - Ryan J Le Tourneau
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sanjana Sen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - David L Narel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Philip G Collins
- Department of Physics & Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
8
|
Apel C, Kasper MA, Stieger CE, Hackenberger CPR, Christmann M. Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal. Org Lett 2019; 21:10043-10047. [DOI: 10.1021/acs.orglett.9b03982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Caroline Apel
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Marc-André Kasper
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian E. Stieger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
9
|
Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Nat Commun 2019; 10:142. [PMID: 30635561 PMCID: PMC6329768 DOI: 10.1038/s41467-018-08010-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
Efficient and site-specific chemical modification of proteins under physiological conditions remains a challenge. Here we report that 1,4-dinitroimidazoles are highly efficient bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Under acidic to neutral aqueous conditions, 1,4-dinitroimidazoles react specifically with cysteines via a cine-substitution mechanism, providing rapid, stable and chemoselective protein bioconjugation. On the other hand, although unreactive towards amine groups under neutral aqueous conditions, 1,4-dinitroimidazoles react with lysines in organic solvents in the presence of base through a ring-opening & ring-close mechanism. The resulting cysteine- and lysine-(4-nitroimidazole) linkages exhibit stability superior to that of commonly employed maleimide-thiol conjugates. We demonstrate that 1,4-dinitroimidazoles can be applied in site-specific protein bioconjugation with functionalities such as fluorophores and bioactive peptides. Furthermore, a bisfunctional 1,4-dinitroimidazole derivative provides facile access to peptide macrocycles by crosslinking a pair of cysteine or lysine residues, including bicyclic peptides of complex architectures through highly controlled consecutive peptide macrocyclization. The selective formation of protein bioconjugates under physiological conditions is a challenging task. Here, the authors report that 1,4-dinitroimidazoles are reagents of choice for protein bioconjugation at either cysteine or lysine sites within short times and provide facile access to peptide macrocycles.
Collapse
|
10
|
Lin Y, Vong K, Matsuoka K, Tanaka K. 2-Benzoylpyridine Ligand Complexation with Gold Critical for Propargyl Ester-Based Protein Labeling. Chemistry 2018; 24:10595-10600. [PMID: 29791049 DOI: 10.1002/chem.201802058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/18/2018] [Indexed: 01/07/2023]
Abstract
In previously reported work, AuIII complexes coordinated with 2-benzoylpyridine ligand, BPy-Au, were prebound to a protein and used to discover a novel protein-directed labeling approach with propargyl ester functional groups. In this work, further examination discovered that gold catalysts devoid of the 2-benzoylpyridine ligand (e.g., NaAuCl4) had significantly reduced levels of protein labeling. Mechanistic investigations then revealed that BPy-Au and propargyl esters undergo a rare example of C(sp2 )-C(sp) aryl-alkynyl cross-coupling, likely through spontaneous reductive elimination. Overall, these observations appear to suggest that BPy-Au-mediated, propargyl ester-based protein labeling acts via an activated ester intermediate, which contributes to our understanding of this process and will aid the expansion/optimization of gold-catalyst usage in future bioconjugation applications, especially in vivo.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russia.,JST-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
11
|
Abstract
Advances in bioconjugation and native protein modification are appearing at a blistering pace, making it increasingly time consuming for practitioners to identify the best chemical method for modifying a specific amino acid residue in a complex setting. The purpose of this perspective is to provide an informative, graphically rich manual highlighting significant advances in the field over the past decade. This guide will help triage candidate methods for peptide alteration and will serve as a starting point for those seeking to solve long-standing challenges.
Collapse
Affiliation(s)
- Justine N. deGruyter
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lara R. Malins
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Chen D, Disotuar MM, Xiong X, Wang Y, Chou DHC. Selective N-terminal functionalization of native peptides and proteins. Chem Sci 2017; 8:2717-2722. [PMID: 28553506 PMCID: PMC5426342 DOI: 10.1039/c6sc04744k] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
We report an efficient, highly selective modification on the N-terminal amines of peptides and proteins using aldehyde derivatives via reductive alkylation. After modification of a library of unprotected peptides XYSKEASAL (X varies over 20 natural amino acids) by benzaldehyde at room temperature, pH 6.1 resulted in excellent N-terminal selectivity (α-amino/ε-amino: >99 : 1) and high reaction conversion for 19 out of the 20 peptides. Under similar conditions, highly selective N-terminal modifications were achieved with a variety of aldehydes. Furthermore, N-termini of native peptides and proteins could be selectively modified under the same conditions to introduce bioorthogonal functional groups. Using human insulin as an example, we further demonstrated that preserving the positive charge in the N-terminus using reductive alkylation instead of acylation leads to a 5-fold increase in bioactivity. In summary, our reported method provides a universal strategy for site-selective N-terminal functionalization in native peptides and proteins.
Collapse
Affiliation(s)
- Diao Chen
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Maria M Disotuar
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Xiaochun Xiong
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Yuanxiang Wang
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Danny Hung-Chieh Chou
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| |
Collapse
|
13
|
Ogura A, Tanaka K. Azaelectrocyclization on cell surface: convenient and general approach to chemical biology research. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Tanaka K, Kitadani M, Tsutsui A, Pradipta AR, Imamaki R, Kitazume S, Taniguchi N, Fukase K. A cascading reaction sequence involving ligand-directed azaelectrocyclization and autooxidation-induced fluorescence recovery enables visualization of target proteins on the surfaces of live cells. Org Biomol Chem 2014; 12:1412-8. [PMID: 24435553 DOI: 10.1039/c3ob42267d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A general probe designed to induce a cascading sequence of reactions on a target protein was efficiently synthesized. The cascading reaction sequence involved (i) ligand-directed azaelectrocyclization with lysine and (ii) the autooxidation-induced release of a fluorescence quencher from the labeled protein. The probe was linked to a cyclic RGDyK peptide to enable the selective visualization of integrin αVβ3 on the surfaces of live cells.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McKay CS, Finn MG. Click chemistry in complex mixtures: bioorthogonal bioconjugation. CHEMISTRY & BIOLOGY 2014; 21:1075-101. [PMID: 25237856 PMCID: PMC4331201 DOI: 10.1016/j.chembiol.2014.09.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023]
Abstract
The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting.
Collapse
Affiliation(s)
- Craig S McKay
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
16
|
Du AW, Stenzel MH. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014; 15:1097-114. [DOI: 10.1021/bm500169p] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alice W. Du
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
17
|
Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans. Top Curr Chem (Cham) 2014; 367:201-30. [PMID: 25971916 DOI: 10.1007/128_2014_603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and ⁶⁸Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10⁻⁸ M) within a short reaction time (~5 min) to result in "selective" and "non-destructive" labeling of the more accessible amines. The first MicroPET of glycoproteins, ⁶⁸Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the "self-activating" Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan,
| | | |
Collapse
|
18
|
Tanaka K, Nakamoto Y, Siwu ERO, Pradipta AR, Morimoto K, Fujiwara T, Yoshida S, Hosoya T, Tamura Y, Hirai G, Sodeoka M, Fukase K. Development of bis-unsaturated ester aldehydes as amino-glue probes: sequential double azaelectrocyclization as a promising strategy for bioconjugation. Org Biomol Chem 2013; 11:7326-33. [DOI: 10.1039/c3ob41507d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Moro AV, Ferreira PC, Migowski P, Rodembusch FS, Dupont J, Lüdtke DS. Synthesis and photophysical properties of fluorescent 2,1,3-benzothiadiazole-triazole-linked glycoconjugates: selective chemosensors for Ni(II). Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Fukase K, Tanaka K. Bio-imaging and cancer targeting with glycoproteins and N-glycans. Curr Opin Chem Biol 2012. [DOI: 10.1016/j.cbpa.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Chan AOY, Ho CM, Chong HC, Leung YC, Huang JS, Wong MK, Che CM. Modification of N-terminal α-amino groups of peptides and proteins using ketenes. J Am Chem Soc 2012; 134:2589-98. [PMID: 22288779 DOI: 10.1021/ja208009r] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A method of highly selective N-terminal modification of proteins as well as peptides by an isolated ketene was developed. Modification of a library of unprotected peptides XSKFR (X varies over 20 natural amino acids) by an alkyne-functionalized ketene (1) at room temperature at pH 6.3 resulted in excellent N-terminal selectivity (modified α-amino group/modified ε-amino group = >99:1) for 13 out of the 20 peptides and moderate-to-high N-terminal selectivity (4:1 to 48:1) for 6 of the 7 remaining peptides. Using an alkyne-functionalized N-hydroxysuccinimide (NHS) ester (2) instead of 1, the modification of peptides XSKFR gave internal lysine-modified peptides for 5 out of the 20 peptides and moderate-to-low N-terminal selectivity (5:1 to 1:4) for 13 out of the 20 peptides. Proteins including insulin, lysozyme, RNaseA, and a therapeutic protein BCArg were selectively N-terminally modified at room temperature using ketene 1, in contrast to the formation of significant or major amounts of di-, tri-, or tetra-modified proteins in the modification by NHS ester 2. The 1-modified proteins were further functionalized by a dansyl azide compound through click chemistry without the need for prior treatment.
Collapse
Affiliation(s)
- Anna On-Yee Chan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Tanaka K, Fukase K. Development of Azaelectrocyclization-Based Labeling and Application to Noninvasive Imaging and Targeting Using N-Glycan Derivatives—In Pursuit of N-Glycan Functions on Proteins, Dendrimers, and Living Cells—. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Tanaka K, Yokoi S, Morimoto K, Iwata T, Nakamoto Y, Nakayama K, Koyama K, Fujiwara T, Fukase K. Cell surface biotinylation by azaelectrocyclization: easy-handling and versatile approach for living cell labeling. Bioorg Med Chem 2011; 20:1865-8. [PMID: 22257530 DOI: 10.1016/j.bmc.2011.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
Versatile method for living cell labeling has been established. Cell surfaces are initially biotinylated by azaelectrocyclization, and then treated with the fluorescence-labeled avidin or the anti-biotin antibody.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Discovery and application of 6π-azaelectrocyclization to natural product synthesis and synthetic biology. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4466-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
van Berkel SS, van Eldijk MB, van Hest JCM. Staudinger ligation as a method for bioconjugation. Angew Chem Int Ed Engl 2011; 50:8806-27. [PMID: 21887733 DOI: 10.1002/anie.201008102] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 11/11/2022]
Abstract
In 1919 the German chemist Hermann Staudinger was the first to describe the reaction between an azide and a phosphine. It was not until recently, however, that Bertozzi and co-workers recognized the potential of this reaction as a method for bioconjugation and transformed it into the so-called Staudinger ligation. The bio-orthogonal character of both the azide and the phosphine functions has resulted in the Staudinger ligation finding numerous applications in various complex biological systems. For example, the Staudinger ligation has been utilized to label glycans, lipids, DNA, and proteins. Moreover, the Staudinger ligation has been used as a synthetic method to construct glycopeptides, microarrays, and functional biopolymers. In the emerging field of bio-orthogonal ligation strategies, the Staudinger ligation has set a high standard to which most of the new techniques are often compared. This Review summarizes recent developments and new applications of the Staudinger ligation.
Collapse
Affiliation(s)
- Sander S van Berkel
- Department of Bioorganic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | | | | |
Collapse
|
26
|
van Berkel SS, van Eldijk MB, van Hest JCM. Staudinger-Ligation als Methode zur Biokonjugation. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Tanaka K, Kitadani M, Fukase K. Target-selective fluorescent "switch-on" protein labeling by 6π-azaelectrocyclization. Org Biomol Chem 2011; 9:5346-9. [PMID: 21691664 DOI: 10.1039/c1ob05320e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of azaelectrocyclization and FRET techniques to lysine groups enabled the selective and sensitive detection of a target protein from a mixture, with high fluorescence contrast.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
28
|
Tanaka K. Exploring A Unique Reactivity of 6π-Azaelectrocyclization: Discovery and Application to Natural Products Synthesis and Synthetic Chemical Biology. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
29
|
Labeling study of avidin by modular method for affinity labeling (MoAL). Bioorg Med Chem Lett 2010; 20:7050-3. [DOI: 10.1016/j.bmcl.2010.09.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022]
|
30
|
Tanaka K, Minami K, Tahara T, Fujii Y, Siwu ERO, Nozaki S, Onoe H, Yokoi S, Koyama K, Watanabe Y, Fukase K. Electrocyclization-based labeling allows efficient in vivo imaging of cellular trafficking. ChemMedChem 2010; 5:841-5. [PMID: 20408160 DOI: 10.1002/cmdc.201000027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baslé E, Joubert N, Pucheault M. Protein chemical modification on endogenous amino acids. ACTA ACUST UNITED AC 2010; 17:213-27. [PMID: 20338513 DOI: 10.1016/j.chembiol.2010.02.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 12/15/2022]
Abstract
Chemical modification of protein is an arduous but fruitful task. Many chemical methods have been developed for such purpose by carefully balancing reactivity and selectivity. Now both chemists and biologists have in hand an arsenal of tools from which they can select a relevant reaction to tackle their problems. This review focuses on the various chemical transformations available for selective modification of proteins. It also provides a brief overview of some of their main applications, including detection of protein interactions, preparation of bioconjugates, and protein microarrays.
Collapse
Affiliation(s)
- Emmanuel Baslé
- Molecular Chemistry and Photonic, UMR 6510 CPM, Centre National de la Recherche Scientifique, Université de Rennes1, 263 Avenue du Général Leclerc, 35042 Rennes cedex, France
| | | | | |
Collapse
|
32
|
Tanaka K, Minami K, Tahara T, Siwu ERO, Koyama K, Nozaki S, Onoe H, Watanabe Y, Fukase K. A Combined 6π-Azaelectrocyclization/Staudinger Approach to Protein and Cell Engineering: Noninvasive Tumor Targeting byN-Glycan-Engineered Lymphocytes. J Carbohydr Chem 2010. [DOI: 10.1080/07328303.2010.483042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Tanaka K, Fukase K, Katsumura S. New strategy in synthetic biology: from enzyme inhibition and natural products synthesis to PET imaging by 6π-azaelectrocyclization. CHEM REC 2010; 10:119-39. [DOI: 10.1002/tcr.200900026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Li C, Henry E, Mani NK, Tang J, Brochon JC, Deprez E, Xie J. Click Chemistry to Fluorescent Amino Esters: Synthesis and Spectroscopic Studies. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Sakaguchi T, Kobayashi T, Hatano S, Tsuchikawa H, Fukase K, Tanaka K, Katsumura S. Library-directed solution- and solid-phase synthesis of 2,4-disubstituted pyridines: one-pot approach through 6pi-azaelectrocyclization. Chem Asian J 2009; 4:1573-7. [PMID: 19691083 DOI: 10.1002/asia.200900146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An efficient one-pot synthetic procedure for the synthesis of 2,4-disubstituted pyridines has been successfully established. The method proceeds through a 6pi-azaelectrocyclization-aromatization sequence. Using this method, a wide variety of pyridine structures substituted at the 2-position have been rapidly constructed from vinyl stannanes, vinyl iodide, sulfonamide, and a palladium catalyst. The method was further applied to the solid-phase synthesis wherein the use of a "traceless" sulfonamide linker enabled the rapid preparation of a small library of pyridines with high purity, without any chromatographic separation.
Collapse
Affiliation(s)
- Taku Sakaguchi
- Department of Chemistry and Open Research Center on Organic Tool Molecules, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Auld D, Simeonov A, Thomas C. Literature Search and Review. Assay Drug Dev Technol 2009. [DOI: 10.1089/adt.2009.9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Doug Auld
- National Institutes of Health, Bethesda, Maryland
| | | | - Craig Thomas
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Kunishima M, Nakanishi S, Nishida J, Tanaka H, Morisaki D, Hioki K, Nomoto H. Convenient modular method for affinity labeling (MoAL method) based on a catalytic amidation. Chem Commun (Camb) 2009:5597-9. [DOI: 10.1039/b912908a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|