1
|
Trojan A, Lone YC, Briceno I, Trojan J. Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma. Curr Med Chem 2024; 31:1983-2002. [PMID: 38031775 DOI: 10.2174/0109298673237968231106095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines. METHODOLOGY The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal. RESULTS This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors. CONCLUSION The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.
Collapse
Affiliation(s)
- Annabelle Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- Faculty of Medicine, University of Cartagena, PO Box: 130014 Cartagena de Indias, Colombia
| | - Yu-Chun Lone
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
| | - Ignacio Briceno
- Faculty of Medicine, University of La Sabana, PO Box: 250008 Chia, Colombia
| | - Jerzy Trojan
- INSERM UMR 1197, Cancer Center & University of Paris / Saclay, PO Box: 94802 Villejuif, France
- CEDEA / ICGT - Center of Oncological Diseases Diagnosis, PO Box: 110231 Bogota, Colombia
- National Academy of Medicine - ANM, PO Box: 75272 Paris, France
| |
Collapse
|
2
|
Dysko A, Baker YR, McClorey G, Wood MJA, Fenner S, Williams G, El-Sagheer A, Brown T. Covalently attached intercalators restore duplex stability and splice-switching activity to triazole-modified oligonucleotides. RSC Chem Biol 2022; 3:765-772. [PMID: 35755188 PMCID: PMC9175110 DOI: 10.1039/d2cb00100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
Oligonucleotides are rapidly emerging as powerful therapeutics for hard to treat diseases. Short single-stranded oligonucleotides can base pair with target RNA and alter gene expression, providing an attractive therapeutic approach at the genetic level. Whilst conceptually appealing, oligonucleotides require chemical modification for clinical use. One emerging approach is to substitute the phosphodiester backbone with other chemical linkages such as triazole. The triazole linkage is inherently resistant to enzymatic degradation, providing stability in vivo, and is uncharged, potentially improving cell-penetration and in vivo distribution. Triazole linkages, however, are known to reduce RNA target binding affinity. Here we show that by attaching pyrene or anthraquinone to the ribose sugar on the 5′-side of the triazole, it is possible to recover duplex stability and restore the splice switching ability of triazole-containing oligonucleotides. Oligonucleotides can bind to mRNA and alter gene expression, but require backbone modifications for clinical use. We show that attaching pyrene or anthraquinone to the ribose sugar next to an artificial triazole backbone restores duplex stability and splice switching ability in cells.![]()
Collapse
Affiliation(s)
- Anna Dysko
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
| | - Ysobel R Baker
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford UK
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Glynn Williams
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Afaf El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
- Chemistry Branch Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University Suez 43721 Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
| |
Collapse
|
3
|
Substituent effects on the interactions of ruthenium(II) polypyridyl complexes [Ru(bpy)2(6-R-dppz)]2+ (R = hydroxy and fluorine) with the RNA triplex poly(rU)·poly(rA) × poly(rU). Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Goodchild SA, Gao R, Shenton DP, McIntosh AJS, Brown T, Bartlett PN. Direct Detection and Discrimination of Nucleotide Polymorphisms Using Anthraquinone Labeled DNA Probes. Front Chem 2020; 8:381. [PMID: 32478035 PMCID: PMC7235368 DOI: 10.3389/fchem.2020.00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/14/2020] [Indexed: 02/04/2023] Open
Abstract
A novel electrochemical detection approach using DNA probes labeled with Anthraquinone (AQ) as a reporter moiety has been successfully exploited as a method for the direct detection of DNA targets. This assay uses simple voltammetry techniques (Differential Pulse Voltammetry) to exploit the unique responsiveness of AQ to its chemical environments within oxygenated aqueous buffers, providing a specific detection mechanism as a result of DNA hybridization. This measurement is based on a cathodic shift of the reduction potential of the AQ tag and the concurrent reduction in peak current upon DNA binding. The further utility of this approach for discrimination of closely related DNA targets is demonstrated using DNA strands specific to B. anthracis and closely related bacillus species. DNA targets were designed to the rpoB gene incorporating nucleotide polymorphisms associated with different bacillus species. This assay was used to demonstrate that the shift in reduction potential is directly related to the homology of the target DNA. The discriminatory mechanism is dependent on the presence of oxygen in the measurement buffer and is strongly linked to the position of the nucleotide polymorphisms; with homology at the terminus carrying the AQ functionalised nucleotide critical to achieving accurate discrimination. This understanding of assay design was used to demonstrate an optimized assay capable of discriminating between Yersinia pestis (the causative agent of plague) and closely related species based on the groEL gene. This method is attractive as it can not only detect DNA binding, but can also discriminate between multiple Single Nucleotide Polymorphisms (SNPs) within that DNA without the need for any additional reagents, reporters, or processes such as melting of DNA strands. This indicates that this approach may have great potential to be exploited within novel biosensors for detection and diagnosis of infectious disease in future Point of Care (PoC) devices.
Collapse
Affiliation(s)
- Sarah A Goodchild
- Defence Science and Technology Laboratory, Salisbury, United Kingdom.,University of Southampton, Southampton, United Kingdom
| | - Rachel Gao
- University of Southampton, Southampton, United Kingdom
| | - Daniel P Shenton
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | | | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Philip N Bartlett
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| |
Collapse
|
5
|
Lee HJ, Kim BH. Detection of AAG repeats through DNA triplex-induced G-cluster formation. Chem Commun (Camb) 2019; 55:7526-7529. [PMID: 31187819 DOI: 10.1039/c9cc03704g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This communication describes a novel method, using DNA triplex-based fluorescent probes, for the detection of AAG repeats. A triplex structure with target DNA AAG repeats stabilizes a PyA-modified G-cluster adjacent to the triplex-forming sequence, resulting in a dramatic change in the color of fluorescence from blue to orange.
Collapse
Affiliation(s)
- Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
6
|
Walsh S, El-Sagheer AH, Brown T. Fluorogenic thiazole orange TOTFO probes stabilise parallel DNA triplexes at pH 7 and above. Chem Sci 2018; 9:7681-7687. [PMID: 30393529 PMCID: PMC6182420 DOI: 10.1039/c8sc02418a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
The instability of DNA triplexes particularly at neutral pH and above severely limits their applications. Here, we demonstrate that the introduction of a thiazole orange (TO) intercalator onto a thymine nucleobase in triplex forming oligonucleotides (TFOs) resolves this problem. The stabilising effects are additive; multiple TO units produce nanomolar duplex binding and triplex stability can surpass that of the underlying duplex. In one example, a TFO containing three TO units increased the triplex melting temperature at pH 7 by a remarkable 50 °C relative to the unmodified triplex. Notably, TO intercalation promotes TFO binding to target sequences other than pure polypurine tracts by the use of 5-(1-propynyl)cytosine (pC) against C:G inversions. By overcoming the instability of triplexes across a broad range of pH and sequence contexts, these very simple 'TOTFO' probes could expand triplex applications into many areas including diagnostics and cell imaging.
Collapse
Affiliation(s)
- Sarah Walsh
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
- ATDBio Ltd. , Oxford Science Park , Oxford , UK
| | - Afaf Helmy El-Sagheer
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
- Chemistry Branch , Department of Science and Mathematics , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
| |
Collapse
|
7
|
Aparin IO, Proskurin GV, Golovin AV, Ustinov AV, Formanovsky AA, Zatsepin TS, Korshun VA. Fine Tuning of Pyrene Excimer Fluorescence in Molecular Beacons by Alteration of the Monomer Structure. J Org Chem 2017; 82:10015-10024. [PMID: 28856889 DOI: 10.1021/acs.joc.7b01451] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oligonucleotide probes labeled with pyrene pairs that form excimers have a number of applications in hybridization analysis of nucleic acids. A long excited state lifetime, large Stokes shift, and chemical stability make pyrene excimer an attractive fluorescent label. Here we report synthesis of chiral phosphoramidite building blocks based on (R)-4-amino-2,2-dimethylbutane-1,3-diol, easily available from an inexpensive d-(-)-pantolactone. 1-Pyreneacetamide, 1-pyrenecarboxamide, and DABCYL derivatives have been used in preparation of molecular beacon (MB) probes labeled with one or two pyrenes/quenchers. We observed significant difference in the excimer emission maxima (475-510 nm; Stokes shifts 125-160 nm or 7520-8960 cm-1) and excimer/monomer ratio (from 0.5 to 5.9) in fluorescence spectra depending on the structure and position of monomers in the pyrene pair. The pyrene excimer formed by two rigid 1-pyrenecarboxamide residues showed the brightest emission. This is consistent with molecular dynamics data on excimer stability. Increase of the excimer fluorescence for MBs after hybridization with DNA was up to 24-fold.
Collapse
Affiliation(s)
- Ilya O Aparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Gleb V Proskurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Andrey V Golovin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University , Leninskie gory 1-73, Moscow 119992, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Andrey A Formanovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology , 143026 Skolkovo, Russia
- Central Research Institute of Epidemiology , 111123 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-73, 119992 Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics , 119021 Moscow, Russia
| |
Collapse
|
8
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|
9
|
Tang W, Zhu Z, Tan L. [Ru(bpy)2(7-CH3-dppz)](2+) and [Ru(phen)2(7-CH3-dppz)](2+) as metallointercalators that affect third-strand stabilization of the poly(U)˙poly(A)*poly(U) triplex. MOLECULAR BIOSYSTEMS 2017; 12:1478-85. [PMID: 26999574 DOI: 10.1039/c6mb00094k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stable RNA triplexes play key roles in many biological processes. However, due to Hoogsteen base pairing, triplexes are thermodynamically less stable than the corresponding duplexes. To understand the factors effecting the stabilization of RNA triplexes by octahedral ruthenium(ii) complexes, two Ru(ii) complexes, [Ru(bpy)2(7-CH3-dppz)](2+) (Ru) and [Ru(phen)2(7-CH3-dppz)](2+) (Ru), have been synthesized and characterized in this work. The interactions of the two Ru(ii) complexes with the poly(U)˙poly(A)*poly(U) triplex are investigated by spectrophotometry, spectrofluorometry, circular dichroism as well as viscometry. The results demonstrate that the two complexes are able to enhance the stability of the RNA triplex and serve as molecular "light switches" for the triplex. However, Ru and Ru affecting the stabilization of the third strand are significantly weaker than that of the Watson-Crick base-paired duplex, suggesting that the binding of the two complexes with the triplex is favored by the Watson-Crick base-paired duplex to a large extent. In addition, considering the nature of Ru and Ru, we presume that their binding differences may be due to different ancillary ligand effects. This study further advances our knowledge on the interaction of RNA triple-stranded structures with metal complexes, particularly with Ru(ii) complexes.
Collapse
Affiliation(s)
- Wuzhi Tang
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China. and Key Lab of Environmentally Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
10
|
Zhu Z, Peng M, Zhang J, Tan L. Interaction of octahedral ruthenium(II) polypyridyl complex [Ru(bpy) 2(PIP)] 2+ with poly(U)·poly(A)*poly(U) triplex: Increasing third-strand stabilization of the triplex without affecting the stability of the duplex. J Inorg Biochem 2017; 169:44-49. [PMID: 28104569 DOI: 10.1016/j.jinorgbio.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023]
Abstract
Triple-helical RNA are of interest because of possible biological roles as well as the potential therapeutic uses of these structures, while the stability of triplexes is usually weaker than that of the Watson-Crick base pairing duplex strand due to the electrostatic repulsion between three polyanionic strands. Therefore, how to increase the stability of the specific sequences of triplexes are of importance. In this paper the binding of a Ru(II) complex, [Ru(bpy)2(PIP)]2+ (bpy=2.2'-bipyridine, PIP=2-phenyl-1H-imidazo[4,5-f]- [1,10]-phenanthroline), with poly(U)·poly(A)*poly(U) triplex has been investigated by spectrophotometry, spectrofluorometry, viscosimetry and circular dichroism. The results suggest that [Ru(bpy)2(PIP)]2+ as a metallointercalator can stabilize poly(U)·poly(A)*poly(U) triplex (where · denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing),while it stabilizes third-strand with no obvious effect on the duplex of poly(U)·poly(A), reflecting the binding of this complex with the triplex is favored by the Hoogsteen paired poly(U) third strand to a great extent.
Collapse
Affiliation(s)
- Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Mengna Peng
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jingwen Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
11
|
An overview on the interaction of phenazinium dye phenosafranine to RNA triple and double helices. Int J Biol Macromol 2016; 86:345-51. [DOI: 10.1016/j.ijbiomac.2016.01.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/22/2022]
|
12
|
Zhang H, Liu X, He X, Liu Y, Tan L. Experimental and density functional theory (DFT) studies on the interactions of Ru(II) polypyridyl complexes with the RAN triplex poly(U)˙poly(A)*poly(U). Metallomics 2015; 6:2148-56. [PMID: 25313017 DOI: 10.1039/c4mt00175c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
Collapse
Affiliation(s)
- Hong Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | | | | | | | | |
Collapse
|
13
|
He X, Li J, Zhang H, Tan L. Effect of a Ru(II) polypyridyl complex [Ru(bpy)2(mdpz)]2+ on the stabilization of the RNA triplex poly(U)·poly(A)*poly(U). MOLECULAR BIOSYSTEMS 2015; 10:2552-7. [PMID: 25010433 DOI: 10.1039/c4mb00304g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is renewed interest in investigating triplex nucleic acids because triplexes may be implicated in a range of cellular functions. However, the stabilization of triplex nucleic acids is essential to achieve their biological functions. In contrast to triplex DNA, little has been reported concerning the recognition of triplex RNA by transition-metal complexes at present. We report here a ruthenium(ii) polypyridyl complex, [Ru(bpy)2(mdpz)](2+) (bpy = 2,2'-bipyridine; mdpz = 7,7'-methylenedioxyphenyl-dipyrido-[3,2-a:2',3'-c]phenazine), as a sensitive luminescent probe for poly(U)·poly(A)*poly(U), which can strongly stabilize the triplex RNA from 37.5 to 53.1 °C in solution. The main results further advance our knowledge on the triplex RNA-binding by metal complexes, particularly ruthenium(ii) complexes.
Collapse
Affiliation(s)
- Xiaojun He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | | | | | | |
Collapse
|
14
|
He XJ, Tan LF. Interactions of octahedral ruthenium(II) polypyridyl complexes with the RNA triplex poly(U)•poly(A)*poly(U) effect on the third-strand stabilization. Inorg Chem 2014; 53:11152-9. [PMID: 25272364 DOI: 10.1021/ic5017565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stable triplexes play key roles in many biological processes. Due to the Hoogsteen base pairing, triplexes are, however, thermodynamically less stable than the corresponding duplexes. The poor stabilization of these structures limits their practical applications under physiological conditions. To understand the factors effect on the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the interactions of [RuL2(uip)](2+) {where L = 2,2'-bipyridine (bpy) or 1,10-phenanthroline phen, uip = 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline} with the RNA triplex poly(U)•poly(A)*poly(U) are examined by spectrophotometry, spectrofluorometry, circular dichroism, and viscosimetry in this work. The main results obtained here suggest that the third-strand stabilization depends on the hydrophobicity effects of ancillary ligands bpy and phen.
Collapse
Affiliation(s)
- Xiao-Jun He
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University , Xiangtan 411105, PR China
| | | |
Collapse
|
15
|
Guzaev AP. Solid-phase supports for oligonucleotide synthesis. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 3:3.1.1-3.1.60. [PMID: 23775808 DOI: 10.1002/0471142700.nc0301s53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This unit attempts to provide a reasonably complete inventory of over 280 solid supports available to oligonucleotide chemists for preparation of natural and 3'-modified oligonucleotides. Emphasis is placed on non-nucleosidic solid supports. The relationship between the structural features of linkers and their behavior in oligonucleotide synthesis and deprotection is discussed wherever the relevant observations are available.
Collapse
|
16
|
Aoki E, Taniguchi Y, Wada Y, Sasaki S. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring. Chembiochem 2012; 13:1152-60. [PMID: 22549913 DOI: 10.1002/cbic.201200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Indexed: 11/07/2022]
Abstract
Molecules that can target duplex DNA with sequence selectivity have the potential to be useful tools in genomic research and also as therapeutic agents. Homopurine-homopyrimidine stretches in duplex DNA can be recognized by homopurine or homopyrimidine TFOs (triplex-forming oligonucleotides) through the formation of triplex DNA. We have previously developed bicyclic nucleoside analogues (WNAs) for the formation of stable triplexes in the formation of stable antiparallel triplexes containing a TA or a CG interrupting site. In this study, we investigated the effects on triplex DNA formation of ortho-, meta-, and para-methyl substituent groups on the aromatic ring of the WNA analogue. It was found that the homopurine TFO containing meta- and para-methyl-substituted WNA-βT (mMe-WNA-βT, pMe-WNA-βT) stabilized triplexes containing a TA interrupting site or a GC site, respectively. Interestingly, the ortho-methyl-substituted WNA-βT (oMe-WNA-βT) efficiently promoted DNA strand displacement to form the TFO/pyrimidine duplex. A detailed investigation showed that the duplex was in the antiparallel orientation and that its formation took place prior to triplex formation with the need for a magnesium cation. NOESY measurements indicated a significant difference in the rotation flexibilities of the phenyl rings of WNA-βTs: that is, the conformation of the ortho-methylated phenyl ring was stable in a temperature-independent manner. It was speculated that the initial formation of a ternary complex was followed by strand displacement and then the formation of the TFO/pyrimidine duplex together with the TFO(2)/pyrimidine triplex formation during the early stage, and that the equilibrium shifted to the triplex during the later stage. Although the detailed role is still uncertain, the fixed phenyl ring of oMe-WNA-βT might play a role in the displacement reaction.
Collapse
Affiliation(s)
- Eriko Aoki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Triple-helical nucleic acids are formed by binding an oligonucleotide within the major groove of duplex DNA. These complexes offer the possibility of designing oligonucleotides which bind to duplex DNA with considerable sequence specificity. However, triple-helix formation with natural nucleotides is limited by (i) the requirement for low pH, (ii) the requirement for homopurine target sequences, and (iii) their relatively low affinity. We have prepared modified oligonucleotides to overcome these limitations, including the addition of positive charges to the sugar and/or base, the inclusion of cytosine analogues, the development of nucleosides for recognition of pyrimidine interruptions and the attachment of one or more cross-linking groups. By these means we are able to generate triplexes which have high affinities at physiological pH at sequences that contain pyrimidine interruptions.
Collapse
|
18
|
Chiou CC, Chen SW, Luo JD, Chien YT. Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes. Anal Biochem 2011; 416:1-7. [PMID: 21609711 DOI: 10.1016/j.ab.2011.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) are sequence-dependent DNA binders that may be useful for DNA targeting and detection. A sensitive and convenient method to monitor triplex formation by a TFO and its target DNA duplex is required for the application of TFO probes. Here we describe a novel design by which triplex formation can be monitored homogeneously without prelabeling the target duplex. The design uses a TFO probe tagged with a fluorophore that undergoes fluorescence resonance energy transfer with fluorescent dyes that intercalate into the target duplex. Through color compensation analysis, the specific emission of the TFO probe reveals the status of the triple helices. We used this method to show that triple helix formation with TFOs is magnesium dependent. We also demonstrated that the TFO probe can be used for detection of sequence variation in melting analysis and for DNA quantitation in real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Chiuan-Chian Chiou
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan.
| | | | | | | |
Collapse
|
19
|
Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR, Sørensen CB, Bolund L, Jensen TG. An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 2011; 18:10. [PMID: 21284895 PMCID: PMC3042377 DOI: 10.1186/1423-0127-18-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/02/2011] [Indexed: 11/10/2022] Open
Abstract
Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research.
Collapse
Affiliation(s)
- Nanna M Jensen
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Kolevzon N, Yavin E. Site-Specific DNA Photocleavage and Photomodulation by Oligonucleotide Conjugates. Oligonucleotides 2010; 20:263-75. [DOI: 10.1089/oli.2010.0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Netanel Kolevzon
- The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eylon Yavin
- The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Eick A, Riechert-Krause F, Weisz K. Spectroscopic and calorimetric studies on the triplex formation with oligonucleotide-ligand conjugates. Bioconjug Chem 2010; 21:1105-14. [PMID: 20481559 DOI: 10.1021/bc100107n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several triplex-forming 9-mer oligonucleotide (TFO) conjugates with a methyl- or methoxy-substituted 5-phenyl-6H-indolo[3,2-b]quinoline (PIQ) attached at the 5'-terminus or 3'-terminus or at an internal C5 thymine position were synthesized and tested for their ability to form and stabilize a triple helix with a double-helical DNA target employing UV melting experiments, fluorescence titrations, and isothermal titration calorimetry (ITC). A considerable thermal stabilization by up to 14 degrees C at pH 6.0 was observed for the 5'- and 3'-conjugates with little influence on the type of substituent but also for a conjugate with the ligand tethered by a short linker to the interior of the 9-mer TFO. A detailed thermodynamic characterization of the unmodified TFO and its 5'-conjugate with a methyl-substituted ligand by ITC experiments yielded a DeltaDeltaG degrees of -1.8 kcal mol(-1) at pH 6.0 for the TFO-attached PIQ-triplex interaction and also revealed a favorable entropic contribution as the major determinant for the free energy of PIQ binding in the conjugate. The pH dependence of triplex thermal stability highlights the importance of ring protonation of the triplex-bound ligand for its effective interaction and triplex stabilization near physiological conditions.
Collapse
Affiliation(s)
- Andrea Eick
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Germany
| | | | | |
Collapse
|
22
|
Ben Gaied N, Richardson JA, Singleton DG, Zhao Z, French D, Brown T. End-capped HyBeacon probes for the analysis of human genetic polymorphisms related to warfarin metabolism. Org Biomol Chem 2010; 8:2728-34. [DOI: 10.1039/c001177k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Mahajan S, Richardson J, Gaied N, Zhao Z, Brown T, Bartlett P. The Use of an Electroactive Marker as a SERS Label in anE-melting Mutation Discrimination Assay. ELECTROANAL 2009. [DOI: 10.1002/elan.200904681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|